
Driving Behavior Modeling Based on Hidden Markov Models with

Driver’s Eye-Gaze Measurement and Ego-Vehicle Localization

Naoki Akai1, Takatsugu Hirayama2, Luis Yoichi Morales2, Yasuhiro Akagi2, Hailong Liu1, and Hiroshi Murase1

Abstract— This paper presents a comparison of driving
behavior modeling methods based on hidden Markov models
(HMMs) with driver’s eye-gaze measurement and ego-vehicle
localization. Original HMMs are sometimes insufficient to
model real-world scenarios. To overcome these limitations,
extended HMMs have been proposed, e.g., autoregressive input–
output HMMs (AIOHMMs). This paper first details AIOHMMs
and presents ways to use them for driving behavior modeling.
We compare the performance for behavior modeling and
maneuver discrimination for six types of HMMs. The driving
data for this work was gathered in our university campus
with a car-like vehicle. Experimental results suggest that the
hidden states can properly represent the average of the driving
actions when the driving behaviors are accurately modeled by
the HMMs. It is also suggested that surrounding and past
information can be used to flexibly model the relationship
between driving actions and related information.

I. INTRODUCTION

Advanced driver assistance systems (ADASs) contribute to

reduce traffic accidents. However, the alerts of the ADASs

are sometimes harsh and unpleasant for the drivers because

ADASs are unaware of the driver intentions and can generate

undesirable alerts. The prediction of the driver’s intention and

the anticipation of driving maneuvers are necessary to make

the alerts effective [1], [2], [3], [4], [5]. This paper focuses

on driving behavior modeling for maneuver anticipation.

An example of a driving scene is shown in Fig. 1. The

intention of a driver depends on the surroundings of an

ego vehicle because drivers obtain much information through

eyesight when they decide on driving actions. We focus on

the movement in the eye-gaze direction and the control of the

steering wheel and gas pedal as the driving action. We as-

sume that the driver has several driving states and that driving

actions are generated based on driving states. Additionally,

we assume that driving maneuvers such as turning a corner

are based on a set of surrounding information, driving states,

and actions. In this work, we try to model these relationships

and discriminate driving maneuvers using hidden Markov

models (HMMs). Recently, deep learning-based modeling

has become popular, e.g., [6], [7], but we focus on more

explanatory modeling methods.

1Naoki Akai, Hailong Liu, and Hiroshi Murase are with the Graduate
School of Informatics, Nagoya University, Nagoya 464-8603, Japan

2Takatsugu Hirayama, Luis Yoichi Morales, and Yasuhiro Akagi are with
the Institute of Innovation for Future Society (MIRAI), Nagoya University,
Nagoya 464-8601, Japan

E-mail of the corresponding author akai@nagoya-u.jp

Fig. 1. Driving actions and an ego-vehicle localization result on a 3D
point cloud map in a turning right scene. We model driving behaviors using
various HMMs with the driver’s eye-gaze measurement and the localization
results. The driver wears an eye-gaze measurement device. Note that the
ground points were removed from the 3D map to make it more readable.

Original HMMs have discrete hidden states and emission

variables [8]. In [9], [10], [11], [12], HMMs are used

to model driving behaviors and to estimate a risk level.

Hidden states and emission variables can be viewed as

corresponding to the driving states and actions. However,

the original HMMs are sometimes insufficient to model real

world scenarios because they cannot handle past and input

information. Input information such as an external sensor

and map data affect the hidden states and emission variables.

To overcome these limitations, extended HMMs have been

proposed, including the autoregressive HMM (AHMM) [13],

[14], input-output HMM (IOHMM) [15], and autoregressive

input-output HMM (AIOHMM) [16].

The first contribution of this work is to detail AIOHMMs

and provide comparison results for the driving behavior

modeling based on various types of HMMs. The temporal

modeling using AIOHMMs is described in [16], [17], but

our implementation is a bit different from the both of

these two previous works. In our implementation, more

hyperparameters are introduced, and this paper describes how

these parameters are optimized. We evaluate the learning

and discrimination performances of six types of HMMs with

the driving dataset that was gathered at our university using

2019 IEEE Intelligent Vehicles Symposium (IV)
Paris, France. June 9-12, 2019

978-1-7281-0559-8/19/$31.00 ©2019 IEEE 828

(a) HMM

(c) IOHMM

zTn

yTny2y1

z1 z2 ・ ・ ・ zTn

yTny2y1

z1 z2 ・ ・ ・

・ ・ ・

zTn

yTn

xTn

y2y1

x1 x2

z1 z2 ・ ・ ・ zTn

yTn

xTn

y2y1

x1 x2

z1 z2 ・ ・ ・

zTn

yTn

xTn

y2y1

x1 x2

z1 z2 ・ ・ ・

・ ・ ・

zTn

yTn

xTn

y2y1

x1 x2

z1 z2 ・ ・ ・

・ ・ ・

(b) AHMM

(d) IOHMM2

(e) AIOHMM (f) AIOHMM2

Fig. 2. The graphical models of HMMs used in this work. White and gray
nodes illustrate latent and observable variables, respectively.

the experimental platform shown in Fig. 1. As a second

contribution, we suggest that the hidden states can properly

represent the average of the driving actions when the driving

behaviors are accurately modeled by the HMMs. It is also

suggested that the surroundings and past information can

be used to flexibly model the relationship between driving

actions and related information.

The rest of this paper is organized as follows. Section II

details the modeling using AIOHMMs. Section III describes

the driving behavior modeling in this work. Section IV

describes the comparison results of the driving behavior

modeling and maneuver discrimination using six types of

HMMs. Section V concludes this work.

II. MODELING USING AIOHMMS

Figure 2 illustrates the graphical models of HHMs used

in this work; (a) HMM, (b) AHMM, (c) and (d) IOHMM,

and (e) and (f) AIOHMM. x and y denote the input and

output features and z denotes the discrete hidden states. In

the IOHMM2 and AIOHMM2, the output features depend

on the input features. This section details the AIOHMM2

and the optimization of its hyperparameters.

A. Learning

In the learning phase, we have N sequences of input and

output features as a training dataset. One training dataset

(one sequence) has a time sequence from 1 to Tn; these are

denoted as x
(n)
1:Tn

(x
(n)
t ∈ RM) and y

(n)
1:Tn

(y
(n)
t ∈ RL), and

the training dataset is denoted as D = {(x
(n)
1:Tn

,y
(n)
1:Tn

)|n =
1, ..., N}. We also have discrete hidden states denoted as

z
(n)
1:Tn

(z
(n)
t ∈ RS) with z

(n)
i,t ∈ {0, 1} and

∑

i∈S z
(n)
i,t = 1.

The objective of the learning phase is to find hyperparame-

ters, Θ, that maximize the data log likelihood defined as:

l(Θ;D) =
N
∑

n=1

Tn
∑

t=1

ln p(y
(n)
t |x

(n)
t ;Θ). (1)

It is, however, difficult to directly maximize equation (1)

because the discrete states are latent. We can use the iterative

expectation-maximization (EM) procedure, called the EM

algorithm, to maximize equation (1). The EM algorithm

includes two steps called the E-step and the M-step.

In the E-step, we calculate the expected value of the

complete data log likelihood, Q(Θ; Θ̂), defined as:

Q(Θ; Θ̂) = E[lc(Θ;Dc)|Θ̂,D], (2)

where Θ̂ is the current hyperparameter, lc is the complete

data log likelihood, and Dc is the complete data, Dc =

{(x
(n)
1:Tn

,y
(n)
1:Tn

, z
(n)
1:Tn

)|n = 1, ..., N}. Because Dc includes

the hidden states, it is called the “complete” data. The

complete log likelihood is defined as:

lc(Θ;Dc) =
N
∑

n=1

Tn
∑

t=1

ln p(y
(n)
t , z

(n)
t |x

(n)
t ;Θ). (3)

In the M-step, we maximize the expected value and update

the hyperparameters as follows:

Θ = argmax
Θ

Q(Θ; Θ̂). (4)

The hyperparameters can be optimized by deriving their

closed form update expectations. Some parameters, however,

have constraints that might not be satisfied by simply ap-

plying a closed form update. In these cases, the Lagrange

multipliers can be used. It should be noted that the expected

values are calculated using the current hyperparameters, Θ̂,

and these are regarded as constants in the M-step.

B. Probabilities

We model the AIOHMM2 with the following hyperparam-

eters; Θ = {µi,Σi,ai,1,ai,,bi,πl,Wl} (i = 1, ..., S, l =
1, ..., L). This subsection details the hyperparameters and

their optimization.

1) Emission probability: Let us assume that the output

features of the hidden states are consistent with a Gaussian

distribution. A simple Gaussian can be used in a case where

an output feature depends on a current hidden state. In this

work, a linear Gaussian model is used in cases where an

output feature depends on variables except for a current

hidden state. Means are linearly converted using coefficient

vectors in linear Gaussian models.

In the AIOHMM2, a current output feature, y
(n)
t , depends

on current input and previous output features, x
(n)
t and y

(n)
t−1.

The emission probability is denoted as:

p(y
(n)
t |x

(n)
t ,y

(n)
t−1, z

(n)
t) =

S
∏

i=1

N (y
(n)
t |µ

(n)
i,t ,Σi)

z
(n)
i,t ,

µ
(n)
i,t =

{

(1 + aTi,1x
(n)
t)µi (t = 1)

(1 + aTi x
(n)
t + bT

i y
(n)
t−1)µi (t ≥ 2),

(5)

829

where ai,1, ai, and bi are coefficient vectors related to the i-

th hidden state. ai,1 is not used in [16], [17], but we introduce

it as t = 1 because the dependency of the initial output

feature is less than that of the other output features.

2) Initial probability: As the exception of the initial one,

the hidden states of HMMs depend on a previous hidden

state. This transition can be expressed using a transition

matrix (this will be described next). In HMMs with no input

features, the initial hidden state is completely independent,

and its probability is defined as:

p(z
(n)
1) =

S
∏

i=1

π
z
(n)
i,1

i , (6)

where π ∈ RS with (π)i = πi ≥ 0 and
∑S

i=1 πi = 1.

In HMMs with input features, the initial state depends on

the initial input feature. Let us assume that the input features

can be divided into L groups. In the implementation, we

apply K-means clustering before the learning and obtain the

means and covariances of the clusters. A variable c
(n)
t ∈

{1, ..., L}, that indicates the class number of the cluster to

which an input feature, x
(n)
t , is belonging, is introduced. For

notational convenience, we write c
(n)
t as c when it is used

as an index and denote an initial probability as

p(z
(n)
1 |x

(n)
1) =

S
∏

i=1

π
z
(n)
i,1

ic , (7)

where (πc)i = πic. Equation (7) means that the initial

probability is determined based on the class of an initial

input feature. Note that the initial probability is not used in

[16], [17].

3) Transition probability: In HMMs with no input fea-

tures, the current hidden state only depends on the previous

hidden state. Because there are S discrete states possible, the

conditional probability is denoted using an S × S matrix as

p(z
(n)
t |z

(n)
t−1) =

S
∏

i=1

S
∏

j=1

w
z
(n)
i,t

z
(n)
j,t−1

ij , (8)

where p(z
(n)
t = j|z

(n)
t−1 = i) = (W)ij = wij ≥ 0. To

preserve the consistency of the probabilistic distribution, the

following condition must be satisfied:

S
∑

j=1

wij = 1. (9)

Lagrange multipliers is used in the M-step to maintain this.

As we mentioned before, we assume that the input features

are composed of L clusters. Thus, the transition probabilities

in HMMs with input features are defined as:

p(z
(n)
t |z

(n)
t−1,x

(n)
t) =

S
∏

i=1

S
∏

j=1

w
z
(n)
i,t

z
(n)
j,t−1

ijc , (10)

where p(z
(n)
t = j|z

(n)
t−1 = i,x

(n)
t) = (Wc)ij = wijc.

In [16], [17], the transition probability is modeled as:

p(z
(n)
t = j|z

(n)
t−1 = i,x

(n)
t) =

exp
(

wT
ijx

(n)
t

)

∑S

l=1 exp
(

wT
ilx

(n)
t

) , (11)

where wij ∈ RM are the hyperparameters. The elements of

the initial and transition probabilities easily converge to zero

or one as these are optimized using the log likelihood. To

flexibly model the transitions between hidden states, using

several transition probabilities according to the current input

feature could be an effective approach.

C. Optimization using the EM algorithm

1) E-step: We maximize the data log likelihood shown in

equation (1) using the EM algorithm. We first calculate the

expected value of the complete data log likelihood. By using

equations (5), (7), and (10), we can re-write equation (3) as:

lc(Θ;Dc) =
N
∑

n=1

Tn
∑

t=1

S
∑

i=1

z
(n)
i,t lnπic

+

N
∑

n=1

Tn
∑

t=1

S
∑

i=1

z
(n)
i,t lnN (y

(n)
t |µ

(n)
i,t ,Σi)

+
N
∑

n=1

Tn
∑

t=2

S
∑

i=1

S
∑

j=1

z
(n)
i,t z

(n)
j,t−1 lnwijc.

(12)

Here, we define the expected values of the probabilistic

distribution of z
(n)
t and the joint probabilistic distribution

of z
(n)
t and z

(n)
t−1 with all of the observed variables in one

sequence and hyperparameters as:

γ
(n)
i,t

def
= p(z

(n)
i,t = 1|x

(n)
1:Tn

,y
(n)
1:Tn

,Θ), (13)

ξ
(n)
ij,t

def
= p(z

(n)
i,t = 1, z

(n)
j,t−1 = 1|x

(n)
1:Tn

,y
(n)
1:Tn

.Θ), (14)

With equations (13) and (14), the expected value can be re-

written as:

Q(Θ; Θ̂) =

N
∑

n=1

Tn
∑

t=1

S
∑

i=1

γ
(n)
i,t lnπic

+
N
∑

n=1

Tn
∑

t=1

S
∑

i=1

γ
(n)
i,t lnN (y

(n)
t |µ

(n)
i,t ,Σi)

+
N
∑

n=1

Tn
∑

t=2

S
∑

i=1

S
∑

j=1

ξ
(n)
ij,t lnwijc.

(15)

To efficiently calculate γ
(n)
i,t and ξ

(n)
ij,t, we use the forward-

backward algorithm. Additionally, we use the scaling algo-

rithm to avoid an unstable computation, i.e., underflow. In

this paper, we describe the minimal essential equations to

calculate γ
(n)
i,t and ξ

(n)
ij,t. For readers who want to know more

details, please refer to [18].

γ
(n)
i,t = α̂

(n)
i,t β̂

(n)
i,t , (16)

ξ
(n)
ij,t =

α̂
(n)
i,t wijcN (y

(n)
t |µ

(n)
i,t ,Σi)β̂

(n)
j,t+1

s
(n)
t+1

, (17)

830

s
(n)
t α̂

(n)
i,t =





S
∑

j=1

α̂
(n)
j,t−1wijc



N (y
(n)
t |µ

(n)
i,t ,Σi), (18)

s
(n)
t =

S
∑

i=1





S
∑

j=1

α̂
(n)
j,t−1wijc



N (y
(n)
t |µ

(n)
i,t ,Σi), (19)

s
(n)
t+1β̂

(n)
i,t =

S
∑

j=1

wijcN (y
(n)
t |µ

(n)
i,t ,Σi)β

(n)
j,t+1. (20)

α̂
(n)
i,t and β̂

(n)
i,t can be recursively calculated and their initial

values are set to the following: α̂
(n)
i,1 = πicN (y

(n)
1 |µ

(n)
i,1 ,Σi)

and β̂
(n)
i,Tn

= 1.

2) M-step: In the M-step, γ
(n)
i,t and ξ

(n)
i,t are treated

as constant. We derive the partial derivatives of Q(Θ; Θ̂)
with respect to each hyperparameter regarding the emission

probabilities and update them as:

ai,1 =

(

N
∑

n=1

γ
(n)
i,1 x

(n)
1 x

(n)T
1

)−1

N
∑

n=1

γ
(n)
i,1

(

x
(n)
1 µ

T
i Σ

−1y
(n)
1

µ
T
i Σ

−1
µi

− x
(n)
1

)

,

(21)

ai =

(

N
∑

n=1

Tn
∑

t=2

γ
(n)
i,t x

(n)
t x

(n)T
t

)−1

N
∑

n=1

Tn
∑

t=2

γ
(n)
i,t

(

x
(n)
t µ

T
i Σ

−1y
(n)
t

µ
T
i Σ

−1
µi

− x
(n)
t − bT

i y
(n)
t−1x

(n)
t

)

,

(22)

bi =

(

N
∑

n=1

Tn
∑

t=2

γ
(n)
i,t y

(n)
t−1y

(n)T
t−1

)−1

N
∑

n=1

Tn
∑

t=2

γ
(n)
i,t

(

y
(n)
t−1µ

T
i Σ

−1y
(n)
t

µ
T
i Σ

−1
µi

− y
(n)
t−1 − aTi x

(n)
t y

(n)
t−1

)

,

(23)

µi =

∑N

n=1

∑Tn

t=1 c
(n)
i,t γ

(n)
i,t y

(n)
t

∑N

n=1

∑Tn

t=1 c
(n)2
i,t γ

(n)
i,t

, (24)

Σi =

∑N

n=1

∑Tn

t=1 γ
(n)
i,t V

(n)
i,t

∑N

n=1

∑Tn

t=1 γ
(n)
i,t

, (25)

where c
(n)
i,1 = 1 + aTi,1x

(n)
1 , c

(n)
i,t = 1 + aTi x

(n)
t + bT

i y
(n)
t−1

(t ≥ 2), and V
(n)
i,t = (y

(n)
t − c

(n)
i,t µi)(y

(n)
t − c

(n)
i,t µi)

T . It

should be noted that ai,1, ai, and bi cannot be updated when

N = 1 because the inverse matrices cannot be defined.

The initial probabilities are updated as:

πil =

∑N

n=1 1(c
(n)
t = l)γ

(n)
i,1

∑N

n=1

∑S

j=1 1(c
(n)
t = l)γ

(n)
j,1

, (26)

where 1(·) is an indicator function which is equal to 1 when

the condition within the bracket is true, and 0 otherwise.

As shown in equation (9), the transition matrices reflect

the constraints. To satisfy the maximization constraints, we

introduce a new function defined as:

J(Θ; Θ̂)
def
= Q(Θ; Θ̂)+

S
∑

j=1

K
∑

l=1

λjl

(

1−
S
∑

i=1

wijl

)

, (27)

where λjl are the Lagrange multipliers. Taking the deriva-

tives of this function with respect to wijl, we obtain:

∂J(Θ; Θ̂)

∂wijl

=

N
∑

n=1

Tn
∑

t=2

1(c
(n)
t = l)ξ

(n)
ij,t

1

wijl

− λjl, (28)

Consequently, wijl is updated as:

wijl =

∑N

n=1

∑Tn

t=2 1(c
(n)
t = l)ξ

(n)
ij,t

∑S

i=1

∑N

n=1

∑Tn

t=2 1(c
(n)
t = l)ξ

(n)
ij,t

. (29)

λjl =
∑S

i=1

∑N

n=1

∑Tn

t=2 1(c
(n)
t = l)ξ

(n)
ij,t can be obtained

by imposing the constraint
∑S

i=1 wijl = 1.

In [16], [17], they optimized the coefficients of the tran-

sition matrix, wij shown in equation (11), using gradient

descent because the closed form-based update and Lagrange

multipliers cannot be used. However, they did not provide

the definition of the gradient.

III. DRIVING BEHAVIOR MODELING

A. Experimental platform

We used the car like platform shown at the bottom of

Fig. 1 to gather driving data for this work. The platform

was equipped with a 3D LiDAR (HDL-32e) which allowed

the vehicle to precisely recognize its own position [19],

[20]. Measurements of the 3D LiDAR and an environment-

metric map were used to obtain input features. The inertial

movement can be measured via CAN and IMU. Additionally,

we used the eye-gaze measurement device, Tobii Pro Glasses

2. The inertial movement and eye-gaze information are used

to create the output features.

B. Input features

We first create a virtual 2D scan from the raw 3D scan

points. The minimum and maximum angles of the 2D scan

are set to -135 and 135 degrees. First, the points included in a

region ranging from a -1.5 m to 0.2 m height from the LiDAR

are clipped. Second, a horizontal plane, which is parallel to

the surface of the ground, is radially divided into 25 regions.

The minimum distances of each region are used as elements

of an input feature. The experimental vehicle recognizes its

own position while driving and has an occupancy grid map.

The same 25 regions are set according to the estimated pose

and the minimum distance from the vehicle to obstacles on

the map are used as elements of an input feature as well.

Consequently, one input feature is composed of 50 elements.

831

C. Output features

The eye-gaze measurement device and the experimental

vehicle provide a 3D eye-gaze vector and linear and angular

velocities. We calculate the average and variance values for

the raw, absolute, difference, and absolute difference values

for each measurement for 0.5 s and these are used as ele-

ments of an output feature. Here, the difference is computed

using the current and previous measurements. Consequently,

one output feature is composed of 40 elements.

D. Dimension reduction

In the M-step, we need to compute inverse matrices. Its

computation is heavy and unstable if the size of the matrix is

large. Additionally, input and output features might include

useless information. Thus, we apply a principal component

analysis (PCA) to reduce dimensionality of the input and

output features. The data provided is normalized with respect

to the maximum norm of the data before applying the PCA.

We choose the reduction size consistent with the cumulative

contribution ratio exceeding 90 % in both input and output

features. Consequently, the input and output features are

compressed to 30 and 3 dimensions, respectively.

E. Initial values of hyperparameters

The initial values of the emission probability, µi and Σi,

are given through K-means clustering results. The numbers

of K-means clusters and hidden states of the HMMs are

equal. The coefficient vectors computing the linear Gaussian

model shown in (5), ai,1, ai, and bi, are set to 0. The initial

and transition probabilities, πl and Wl, are set as uniform.

IV. COMPARISON EXPERIMENTS

A. Driving data

We gathered the driving data for six individuals in our

university. Lane change maneuvers could not be observed

as there are no multi-lane roads in our university. Several

interaction scenes with cars and pedestrians occurred and the

drivers slowed down in these scenes. We saw that the drivers

followed the traffic participants in such interactive scenes.

Thus, we divided the driving maneuvers into four maneuvers;

go straight, turn left, turn right, and follow participants.

We gathered approximately 4 hours of driving data that

included 394 total maneuvers, 192 “go straight”, 72 “turn

left”, 87 “turn right”, and 43 “follow participants” maneu-

vers. Approximately half the data was used for learning and

the remainder for verification.

B. Learning results

We first compared the learning results with various num-

bers of hidden states; 3, 5, and 10. Figure 3 shows the K-

means clustering results of the output features of the “go

straight” dataset. The emission probabilities were initialized

using the means and covariances of the clustering results.

Additionally, Fig. 4 shows the clustering results (K = 10)

of the input features of the “go straight” dataset (top) and

the corresponding output features (bottom). It is difficult to

find the direct relationship between input and output features.

Fig. 3. The K-means clustering results of the output features of the “go
straight” dataset. The cluster numbers are 3, 5, and 10 from the top.

Fig. 4. The K-means clustering result of the input features of the “go
straight” dataset (top) and corresponding output features (bottom).

Note that these input and output features were visualized

using the first and second components of the PCA results.

Figure 5 shows the transitions of the complete data log

likelihood during the learning phase. A result with high log

likelihood means that the output features fitted the emission

probabilities well. We could see a trend where the HMMs for

which there was a dependency of the current output features

on the input and past output features fit these output features

well. In fact, the log likelihoods of the original HMMs, that

do not have input and past dependencies against the output

features, were almost smaller than that of the other HMMs.

Figure 6 shows the fitting results of the output features of

the “go straight” dataset for the HMMs. The blue points show

the means of the linear Gaussian model (we refer to these

as the “converted means”). The converted means enabled the

HMMs to flexibly model the output features and this yielded

832

Fig. 5. Transitions of the complete data log likelihood shown in equation (3) for each HMM with various numbers of hidden states, S. The top, middle,
and bottom figures show cases where the number of hidden states is 3, 5, and 10, respectively.

a trend where the HMMs for which there was a dependency

of the output features on the input and the past resulted in

high log likelihoods.

As shown in Fig. 4, the direct relationship between the

input and output features is not visible, but the input features

could be used to increase the log likelihoods. This suggested

that using the hidden states is effective in modeling relations

between the driving actions and the surrounding information.

C. Discrimination results

We can determine the probability that an output feature

sequence, y
(n)
1:Tn

, is obtained with the learnt HMMs using

the forward algorithm [18] as:

p(y
(n)
1:Tn

) =
S
∑

i=1

α
(n)
i,Tn

, (30)

where α
(n)
i,Tn

is defined by omitting s
(n)
t from equation (18).

We evaluated the discrimination performances of the driving

maneuvers for the HMMs using the test dataset.

Figure 7 shows the confusion matrices for all of the

HMMs. The diagonal of the matrices shows the precision. A

trend emerged, as the HMMs with the dependencies on the

output features resulted in a better performance.

The AIOHMM2 with five hidden states and the AHMM

with ten hidden states had the best and worst precision,

respectively. As can be seen in the middle row of Fig. 5,

the AIOHMM2 did not always result in the highest log

likelihood. By contrast, as can be seen in the bottom row,

the AHMM usually resulted in a higher log likelihood.

These results show that results with high log likelihood

means that the output features are well fitted to the emission

probabilities, however this sometimes leads to overfitting

where the output features are not accurately modeled.

D. Discussion

Figure 8 shows the fitting results of the output features of

the “turn left”, “turn right”, and “follow participants” datasets

for the AIOHMM2 with five hidden states and the AHMM

with ten hidden states. As can be seen in Figs. 6 and 8,

almost all the means are seen inside the output features and

the converted means could capture the discriminative patterns

of the output features. By contrast, several means are seen

outside of the output features in the AHMM fitting results.

Additionally, the shift in converted means is larger here than

it is in the AIOHMM2 fitting results. The hidden states can

be seen as adequately representing average driving actions

and the coefficients for computing linear Gaussian models

flexibly represent the relationship between driving actions

and related information when the driving behaviors are accu-

rately modeled. In contrast, the AHMM fitting results could

be interpreted as over-fitting because the output features were

forcibly fitted using the converted means and this does not

suitably represent the relationship between driving actions

and related information.

In [21], driving features were extracted using the deep

autoencoder with driving information such as CAN. The

benefit of deep learning-based methods is to extract complex

nonlinear relationships and these approaches successfully

managed to classify and visualize driving behaviors based

on extracted 3D features. It is, however, still difficult to

describe driving behaviors with extracted features because

understanding relations between the features extracted, and

the driving actions is challenging. By contrast, HMMs-based

methods could tell us the relationships between the hidden

states and driving actions as we can access the emission

probability of each hidden state. However, the descriptive and

extraction abilities of the HMM-based methods for complex

nonlinear relations are not higher than that of the deep

learning-based methods. In fact, we can only consider linear

833

Fig. 6. Fitting results of the output features of the “go straight” dataset for the six HMMs with various numbers of hidden states.

relations between driving actions and input and past infor-

mation in AIOHMMs. Combining both benefits is necessary

for further analyzing the relations between driving actions

and related information.

V. CONCLUSION

This paper has presented six driving behavior models

based on HMMs with measurement of the driver’s eye-gaze

and ego-vehicle localization. We first detailed AIOHMMs

and their implementation and then compared the modeling

and driving maneuver discrimination performance of the

HMMs. The comparison results suggested that the hidden

states can properly represent the average of the driving

actions when the driving behaviors are accurately modeled

by the HMMs. It is also suggested that surrounding and past

information can be used to flexibly model relations between

the driving actions and related information.

ACKNOWLEDGMENT

This work was supported by the Center of Innovation

Program (Nagoya-COI) funded by the JST Agency, JST-

Mirai Program (Grant Number JPMJMI17C6), and Technova

Inc. We would also like to thank Profs. Takayuki Morikawa

and Kzuya Takeda who helped with the experiments.

REFERENCES

[1] L. Fletcher et al. Correlating driver gaze with the road scene for driver
assistance systems. Rob. and Auton. Systems, 52:71–84, 2005.

[2] A. Tawari et al. Looking-in and looking-out vision for urban intelligent
assistance: Estimation of driver attentive state and dynamic surround
for safe merging and braking. In Proc. of the IEEE Intel. Veh. Symp.,
pages 115–120, 2014.

834

Fig. 7. The confusion matrices for HMMs. GS, TL, TR, and FP denote “go straight”, “turn left”, “turn right”, and “follow participants”, respectively.

Fig. 8. The fitting results of the output features of the “turn left”, “turn right”, and “follow participants” for the AIOHMM2 with five hidden states (top)
and the AHMM with ten hidden states (bottom). The AIOHMM2 and the AHMM had the best and worst precision, respectively.

[3] M. Rezaei et al. Look at the driver, look at the road: No distraction!
no accident! In Proc. of the IEEE Int. Conf. on Computer Vision and

Pattern Recognition, 2014.

[4] F. Vicente et al. Driver gaze tracking and eyes off the road detection
system. IEEE Trans. on Intel. Transp. Systems, 16(4):2014–2027,
2015.

[5] N. Rhinehart et al. R2P2: A reparameterized pushforward policy
for diverse, precise generative path forecasting. In The European

Conference on Computer Vision, 2018.

[6] A. Jain et al. Brain4Cars: Car that knows before you do via sensory-
fusion deep learning architecture. CoRR, abs/1601.00740, 2016.

[7] F. Codevilla et al. End-to-end driving via conditional imitation
learning. In Proc. of the IEEE Int. Conf. on Rob. and Autom., pages
4693–4700, 2018.

[8] L. R. Rabiner. A tutorial on hidden Markov models and selected
applications in speech recognition. In Proc. of the IEEE, volume 77,
pages 257–286, 1989.

[9] N. Oliver et al. Graphical models for driver behavior recognition in a
SmartCar. In Proc. of the IEEE Intel. Veh. Symp., pages 7–12, 2000.

[10] H. Berndt et al. Continuous driver intention recognition with hidden
Markov models. In Proc. of the IEEE Int. Conf. on Intel. Transp.

Systems, pages 1189–1194, Oct 2008.

[11] H. Hou et al. Driver intention recognition method using continuous
hidden Markov model. Int. J. of Computational Intel. Systems,
4(3):386–393, 2011.

[12] M. Mori et al. Integrated modeling of driver gaze and vehicle operation

behavior to estimate risk level during lane changes. In Proc. of the

IEEE Int. Conf. on Intel. Transp. Systems, 2013.
[13] B.-H. Juang et al. Mixture autoregressive hidden Markov models for

speech signals. IEEE Trans. Acoustics, Speech, and Signal Processing,
33:1404–1413, 1985.

[14] Y. Kishimoto et al. A modeling method for predicting driving behavior
concerning with driver’s past movements. In Proc. of the IEEE Int.

Conf. on Veh. Elec. and Safety, pages 132–136, 2008.
[15] Y. Bengio et al. An input output HMM architecture. In Proc. Int. Conf.

on Neural Information Processing Systems, pages 427–434, 1994.
[16] A. Jain et al. Car that knows before you do: Anticipating maneuvers

via learning temporal driving models. CoRR, abs/1504.02789, 2015.
[17] E. L. Zec et al. Statistical sensor modelling for autonomous driving

using autoregressive input-output HMMs. In Proc. of the IEEE Int.

Conf. on Intel. Transp. Systems, pages 1331–1336, 2018.
[18] C. M. Bishop. Pattern Recognition and Machine Learning. Springer-

Verlag, Berlin, Heidelberg, 2006.
[19] N. Akai et al. Robust localization using 3D NDT scan matching with

experimentally determined uncertainty and road marker matching. In
Proc. of the IEEE Intel. Veh. Symp, pages 1357–1364, 2017.

[20] N. Akai et al. Autonomous driving based on accurate localization
using multilayer lidar and dead reckoning. In Proc. of the IEEE Int.

Conf. on Intel. Transp. Systems, pages 1147–1152, 2017.
[21] K. Sama et al. Driving feature extraction and behavior classification

using an autoencoder to reproduce the velocity styles of experts. In
Proc. of the IEEE Int. Conf. on Intel. Transp. Systems, pages 1337–
1343, 2018.

835

