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ABSTRACT

In this paper, we propose a method for constructing an isosurface
from volumetric data sampled with a face-centered cubic lattice.
In general. the isosurface is constructed as a polyhedron
composed of connected triangle patches. Most existing methods
generate each vertex of the triangle patches on the edge of a
polyhedral cell. The proposed method generates the vertices
inside of the polyhedral cells. Our method enables construction
of a high quality isosurface because it generates many good
aspect ratio triangle patches of an almost uniform size. We
experimentally compared the resulting surface of our method
with those of existing methods, and have thus demonstrated the
effectiveness of our method

1. INTRODUCTION

Volumetric data is widely used in many disciplines such as
biomedical science, computer graphics, and visualization.
Computed tomography is a typical use of volumetric data. The
value of each lattice point is the degree of x-ray beam attenuation
at that point. These points are samples with an orthogonal cubic
lattice. Visualization of such volumetric data is important to
understand their geometrical properties. There are many ways of
visualizing three-dimensional volumetric data. Isosurface
representation i1s the most common one. The isosurface that
torms the boundary surface of an object is usually defined as a
set of connected triangle patches. The technique for generating
an isosurface from volumetric data is a useful tool in many areas.
Many methods for generating an isosurface have been
reported. Most of these construct an isosurface as an
approximated polyhedron composed of small triangle patches.
The marching cubes (MC) method [1] is a well known
fundamental method for isosurface construction from volumetric
data sampled with an orthogonal cubic lattice. The MC method
generates triangle patches in a cube composed of eight adjacent
lattice pomnts (Fig. ). The vertices of each patch are located on
the edge ot ihe cubic lattice. Many methods improving upon the
MC method have been developed [2]-[10]. Some of the methods
deal with volumetric data sampled with other tvpes of lattice to

improve the quality of the resulting surfaces. Most of these
methods use a body-centered cubic (BCC) lattice or a face-
centered cubic (FCC) lattice [11]-{16]. The quality of an
isosurface depends on the triangle patches — patches with very
acute angles or that are too small lower the surface quality. The
aspect ratio of a triangle is thus used as a criterion to evaluate the
shape of each patch, and is often used to evaluate the isosurface
quality [11][14][17]-[19]. A regular triangle has a maximum
aspect ratio of 1. As a triangle becomes more acute, the aspect
ratio approaches 0. When a triangle patch is very small. though,
even if it has a good aspect ratio it does not help improve the
isosurface quality. Therefore, two requirements must be met to
realize a fine isosurface.
* The isosurface must contain many triangle patches with good
aspect ratios.
e The surface must contain many triangle patches of almost the
same size.

We propose a new method for generating an isosurface
from volumetric data sampled with an FCC lattice. The MC
method uses a cube, which is widely used with common
volumetric data (Fig. 1). In contrast, our proposed method uses
two types of polyhedron — two tetrahedrons and an octahedron.
Such a polyhedron is called the cell. A tetrahedral cell is
composed of four adjacent lattice points and an octahedral cell is
composed of six adjacent lattice points (Fig. 2). Most methods
generate each triangle patch within a polyhedral cell. Our method
generates it among adjacent cells. It tumns out that our method
leads to a high quality isosurface in terms of the above
requirements. We experimentally constructed surfaces to test the
effectiveness of our method. In these experiments, we
algebraically generated two kinds of volumetric data and
compared the effectiveness of the MC method and that of a
method using an FCC lattice which we previously proposed
[12][13] with the effectiveness of our new method.

2. RELATED WORK

2.1. Marching Cubes method

The MC method is used for isosurface construction from
volumetric data sampled with an orthogonal cubic lattice [1]. The
MC method constructs an isosurface as an approximate
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Figure 1. Triangle patch generation in a cubic cell with the
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Figure 2. Parallelepiped tessellation: (@) and (b) show a
parallelepiped cell in an FCC lattice, and (c) shows two types
of polyhedral cell that are used in a method with an FCC
lattice.

polyhedron composed of -small triangle patches. Each of the
triangle patches is generated in a cubic cell as shown in Fig. 1. The
cubic cell is composed of eight adjacent lattice points. When one
of two lattice points on an edge of the cube is an intemal point of
an object domain and the other is external, such a pair of lattice
points is called a boundary pair. The MC method defines each
vertex of the patch between the boundary pair by means of linear
interpolation. 256 (ie., = 2°* ) configurations of a cubic cell can be
considered for different amrangements of the intemal and external
lattice points. Accordingly, a pre-defined table containing the
correspondence between the configuration and the way of
triangulation can be used to reduce the computational cost.
However, defining such a large table incurs a large cost. These
256 configurations are integrated into 14  fundamental
configurations by taking into account Symmetry. rotation, and
inversion. There are, however, some ambiguous  triangulations
among the configurations. Therefore, when each of two adjacent
cubic cells belongs to particular configurations, the MC method
generates a topological hole in the resulting surface. Many
methods have been developed to prevent this ambiguity [4]-[10].
One of the simplest solutions is exceptional definition of the
triangulations for each of the particular configurations [6][7][9].
Tetrahedral tessellation methods [20]-[22] are also a solution.
They divide the cubic cell into tetrahedral cells. The tetrahedral
cell has only 16 possible triangulations, and these are reduced to
three through symmetry.

2.2. Isosurface Construction with Other Lattices

Methods not based upon the orthogonal cubic lattice have also
been developed. These methods deal with a face-centered cubic
(FCC) lattice or a bodv-centered cubic (BCC) lattice. To
generate triangle patches. these methods use polyvhedral cells of
various shapes. In the methods dealing with a BCC Iattice.
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Figure 3. Triangulations in a tetrahedral cell
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Figure 4. Triangulation in an octahedral cell: there are two
different triangulations (f) and (g) for the same configuration.

tetrahedral tessellation [14][15], octahedral tessellation, and
hexahedral tessellation [16] have been reported.

The FCC lattice structure is the closest packing structure in
the sphere-packing problem [23]. There have been reports that
the topological understanding of a figure on an FCC lattice is
simpler than that for one on an orthogonal cubic lattice [24][25].
We earlier proposed a method for the FCC lattice [12][13]. This
method does not create false holes, and improves the geometrical
property of the resulting patches [1 1]. It uses both a regular
octahedral cell and a regular tetrahedral cell. These cells are
divided from a parallelepiped cell composed of eight adjacent
lattice points (Fig. 2). The triangulations in each of these cells are
achieved in the same manner as with the MC method. There are
three possible triangulations in the tetrahedral cell (Fig. 3), and
the octahedral cell has 64 possible triangulations, which are
reduced to seven through symmetry (Fig. 4). Ambiguous
triangulations are shown in Figs. 4(f) and (g). In this octahedral
cell, the topology of the resulting surface may not be consistent.
This method, however, does not generate topological holes if
either cell is used for triangulation. Furthermore. continuity of the
resulting surface is entirely retained. Therefore. the particular
triangulation shown in Fig. 4(f) is used in this paper.

3. ALGORITHM

3.1. Isosurface Construction

Our method uses the same polyhedral cells as were used in our
previous method for an FCC lattice [12][13]. The patch
generation, however, differs from that in most other methods.
Our proposed method generates each triangle patch among
adjacent polyhedral cells, while most methods generate the patch ™
within the polyhedral cell. Each boundary pair is shared among
four polvhedral cells (i.e.. two octahedral cells and two
tetrahedral cells) as shown in F ig. 5. Our method generates two
triangle patches between the boundary pair. The vertex of each
pair of patches lies within either two octahedral cells or two
tetrahedral cells. These triangle patches tend to have a good



triangle patches v,v,v, and v,v,v, are generated among
four adjacent polyhedral cells that have the ‘same boundary

a b c
Figure 6. Definition of the vertex in polyhedral cells with our
method: A vertex v is generated at the barycenter of points

e, thatare interpolated on the edges between the boundary
pairs through our previous FCC method.

aspect ratio because of the relative position of these three

polyhedrons. Each vertex is defined as the barycenter of the

points calculated by our previous method for an FCC lattice on
the polyhedral cell. This reduces the number of very thin or small
triangle patches. The algorithm can be described as follows.

1. When an octahedral cell has more than one boundary pair,
detect the tetrahedral cells that share the boundary pair.

2.For each detected tetrahedral cell and the octahedral cell.
temporarily calculate the edge points on the cell by our
previous method.

3. A vertex in each of the cells is located at the barycenter of
these temporary points on the cell as shown in Figs. §(a) and
(b). Two vertices are generated inside of the octahedral cell
from the two sets of the temporary points only in the case
shown in Fig. 6(c). These vertices correspond to the two
separate polygons shown in Fig. 4(f).

4. Triangle patches are generated from these vertices so that
every patch has a vertex in the octahedral cell and two vertices
in the tetrahedral cells (Fig. 7). In the case of Fig. 7(f). two
polygons are generated.

3.2. Implementation

To reduce the computational cost, our method can also use a pre-
defined table containing the correspondence between the
octahedral cell configurations and the ways of triangulation. In
our method. there are six fundamental triangulations for the
octahedral cells shown in Fig. 7. These correspond to the
triangulations of our previous method with an FCC lattice as
shown in Figs. a) to (f). There are only three polygon shapes
(i.e., tetragon, hexagon. and octagon) that have a vertex in the

Figure 7. Trangulations around an -octahedral cell: The
vertices located in an octahedral cell are represented by v,

and v,'. Other vertices located in each tetrahedral cell
adjoining the octahedral cell are represented. by v, (i # 0)
which comespond to v, shown in Fig. 8.

Figure 8. An octahedral cell and eight adjacent tetrahedral
cells: The vertex located in the octahedral cell is represented

by v, . Other vertices located in each tetrahedral cell are
represented by v, (i = 0) which comespond to v, shown in
Fig. 7.

octahedral cell. Moreover, each polygon can be triangulated
uniquely, whereas several possible triangulations exist in other
methods.

Each of the vertices in the tetrahedral cells may have to be
calculated three or four times because each tetrahedral cell
adjoins four octahedral cells: however. the computing cost can be
reduced by storing in memory the status of each vertex inside of
the tetrahedral cell when it is referred to for the first time.

4. RESULTS AND DISCUSSION

4.1. Comparison Conditions

To compare our proposed method with existing methods (i.e.,
the MC method [1] and our previous FCC method [12][13]) in
terms of the geometrical features of the resulting surfaces. we
used two kinds of volumetric data (i.e.. a spherical surface and a
complicated one generated by meta-ball [26]). The volumetric
data were sampled for three different resolutions. In each
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Table 1. Quantitative results for the sphéri¢al.surface

i

» Resolution JMethod : :;;rtr;al Patches :;i: area ::r:;ia;: o
mC 305 680],: 0.3260] 0.2304|
JLow Previous FCC 321| 1508  0.1477] 0.1996
. Our m‘e'ihéd; 321 1542| -%0.1462) 0.0564] -
Me "2517]  2648]  0.0819] 0051|

Middle Previous FCC| 2587 6260/ 0.0359] 0.0577

Our method 2587| 6264 0.0358| 0.0178

MC 20341| 10616]  0.0212] 0.0124

High Previous FCC| 20473 24644|  0.0092] 0.0143

Our method 20473 24648 0.0091 0.0043

Table 2. Quantitative resuits for the complicated surface

Resolution JMethod :;;rlr;al Patches pN:i: area j:?:ti::
MC 9929| 12224 0.3325| 0.2004
Low Previous FCC 9963 27236 0.1529| 0.2285
Our method 9963 27244 0.1452) 0.0677

MC 79586 50164 0.0833| 0.0499
Mddle Previous FCC 79571 112752 0.0374| 0.0560
Our method 79571] 112728 0.0368| 0.0161

MC 636672 201392 0.0209| 0.0125
Hgh Previous FCC | 636567 454808 0.0093| 0.0139
Our method 636567 454780 0.0092| 0.0040

experiment, for the same volume data, the resulting surfaces
were compared in terms of five criteria: (1) the number of
intemal points, (2) the number of triangle patches, (3) the surface
area of each triangle patch, (4) the aspect ratio of each triangle
patch, (5) the appearance of the resulting surface.

The surface area of a triangle patch was calculated under
the condition that the distance between two adjacent lattice points
on the orthogonal cubic lattice could become 1. The aspect ratio
is one of the criteria used to evaluate the shape of a triangle. A
triangle that is similar to a regular triangle has a good aspect ratio
of close to I, while a thin triangle has a poor aspect ratio of close
to 0. There are many definitions of the aspect ratio. In this paper,
we define the aspect ratio 4 as 4 = 2r/R . where " and R

represent, respectively, the radius of the inscribed circle and of
the circumscribed circle. Triangle patches with a poor aspect
ratio and very small triangle patches degrade the surface
appearance, thus these criteria are important ones.

To ensure a fair comparison, we considered the distance
between neighboring lattice points so that the volume of the
rhombic dodecahedron that is the Voronoi polyhedron for the
FCC lattice point and the volume of the cube that is the Voronoi
polyhedron for the orthogonal cubic lattice point would be the
same. Thus, the sampling point densities on the two types of
lattice were almost the same, :
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Figure 9. Cumulative histogram of the aspect ratio for the
spherical surface to the highest resolution shown in
Table 1
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Figure 10. Cumulative histogram of the aspect ratio for the
complicated surface to the highest resolution shown in
Table 2

4.2. Resulting Surfaces

Figures 11 and 12 show the experimental results from the
isosurface construction in the case of the lowest resolution.
Figures 9 and 10 are cumulative histograms of the aspect ratio in
the case of the highest resolution, and Tables 1 and 2 show the
quantitative results for each resolution. The surface obtained
through our method seems to be the finest in appearance from
among the three methods. Some jags can be seen in the surface
obtained through the MC method and our previous FCC
method; these were due to the existence of very thin or small
triangle patches. In contrast, few jags appeared in the resulting
surface when our new method was used. Two measurements
confirmed this finding. First, the standard deviation of the patch
area was smaller than that with our previous FCC method
(Tables 1 and 2). Second, our method generated a much larger
number of almost regular triangle patches (Figs. 9 and 10).

The three methods were almost equivalent in the number
of intemnal points for each resolution (Tables 1 and 2). In each
case, our method and the previous FCC method generated
almost the same number of patches. However the standard
deviation against the mean surface area of our method was
smaller than that of the previous FCC method. This demonstrates
that our method generated fewer triangle patches that were too
small or too big. Figures 9 and 10 show that the resulting surface
when our method was used had a lot of good aspect ratio triangle
patches. When our new method was used. the percentage of



patch number with a good aspect ratio (ie. > 0.9) was the
highest and the percentage of patch number with a poor aspect
ratio (i.e.. < 0.7) was the lowest among these three methods. This
histogram feature was not depend on the surface geometry and
could be seen for all other resolutions. Thus, for the reasons
given above, we could conclude that our .proposed method
generates many good aspect ratio triangle patches of almost
uniform size.

Our proposed method, however, generates more than
double the number of triangle patches generated by the MC
method (Tables 1 and 2). Therefore, a means of triangle patch
reduction that removes poor aspect ratio triangle patches may be
needed.

5. CONCLUSION

In this paper, we have proposed a new method for constructing

high quality isosurfaces from volumetric data sampled with an

FCC lattice, and have demonstrated the effectiveness of our

method in experiments by comparing the resulting surfaces with

those from existing methods in terms of geometrical criteria. To
summarize, our method provides the following benefits.

o The quality of the resulting surface is greatly improved
through the use of many good aspect ratio triangle patches that
tend to be uniformly large.

o The resulting surface is composed of only three types of
polygon that are uniquely triangulated.

o The resulting surface does not have topological holes as are
generated by the MC method. and the topology is identical to
that obtained with our previous method using an FCC lattice.

e A computational cost for isosurface construction comparable
to that with existing methods can be obtained by using a pre-
defined table regarding the triangulation.

Our future work will include isosurface construction from
computed tomography data using our method. and development
of a method for removing any triangle patches with a poor aspect
ratio that are generated by our method.
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Figure 11. Resuling surfaces of each method for the
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Figure 12. Resulting surfaces of each method for the complicated surface: these surfaces comrespond to the lowest resolution
shown in Table 2.



