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Abstract

In contrast to the traditional approach, the recogni-
tion problem is formulated as one of matching ap-
pearance rather than shape. For any given vision
task, all possible appearance variations define its vi-
sual workspace. A set of images Is obtained by
coarsely sampling the workspace. The image set is
compressed to obtain a low-dimensional subspace,
called the eigenspace, in which the visual workspace
is represented as an appearance manifold. Given an
unknown input image, the recognition system first
projects the image to eigenspace. The parameters
of the vision task are recognized based on the exact
position of the projection on the appearance mani-
fold. Appearance representation has numerous ap-
plications in visual perception. As examples, a real-
time recognition system with 20 complex objects and
a real-time visual tracking system are described. The
simplicity and generality of the proposed ideas have
led to the development of a comprehensive software
library for appearance modeling and matching.

1 Introduction

Vision research has laid significant emphasis on the
development of compact and descriptive shape repre-
sentations for object recognition [Requicha 80, Besl
and Jain 85, Nalwa 93]. This has lead to the creation
of a variety of novel representations, including, gen-
eralized cylinders [Binford &7], superquadrics [Barr
31][Pentiand 86), extended gaussian images [Horn 84],
parametric bicubic patches [Nalwa 93] and differen-
tial geometric representations [Brady et al. 85}, only
to name a few. While these representations are all
useful in specific application domains, each has been
found to have its own drawbacks. This has kept re-
searchers in search for more powerful representations.

Will shape representation suffice? After all, vision
deals with brightness images that are functions not
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only of shape but also other intrinsic scene proper-
ties such as reflectance and perpetually varying fac-
tors such as illumination. This observation has mo-
tivated us to take an extreme approach to visual
representation. What we seek is not a representa-
tion of shape but rather appearance [Murase and
Nayar 92}, encoded in which are brightness varia-
tions caused by three-dimensional shape, surface re-
flectance properties, sensor parameters, and illumi-
nation conditions. Given the number of factors at
work, it is immediate that an appearance represen-
tation that captures all possible variations is simply
impractical. Fortunately, there exist a wide collec-
tion of vision applications where pertinent variables
are few and hence compact appearance representa-
tion in low-dimensional space is indeed possible.

An added drawback of shape representation emerges
when a vision programmer attempts to develop a
practical recognition system. Techniques for auto-
matically acquiring shape models from sample ob-
jects are only being researched. For now, a vision
programmer is forced to select an appropriate shape
representation, design object models using the chosen
representation, ard then manually input this infor-
mation into the system. This procedure is cumber-

. some and impractical when dealing with large sets of

objects, or objects with complex shapes. It is clear
that recognition systems of the future must be ca-
pable of acquiring object models without human as-
sistance. It turns out that the appearance represen-
tation proposed here is easier to acquire through an
automatic learning phase than to create manually.

Will appearance representation suffice? Given the
large number of parameters that affect appearance,
it does not suggest itself as a replacement for shape
representation. In fact, our experiments on recogni-
tion and robot tracking show that appearance mod-
els are in many ways complementary to shape models.
Appearance representation proves extremely effective
when the task variables are few; it is efficient and cir-
cumvents time-consuming and often unreliable oper-
ations such as feature detection. On the other hand,



when occlusion effects are not negligible shape mod-
els offer solutions in the form of partial matching that
appearance representation does not easily lend itself
to.

Parametric appearance representations have been ap-
plied to a variety of problems, including, object
model acquisition [Murase and Nayar 93], efficient
object recognition [Murase and Nayar 92], illumina-
tion planning for robust object recognition [Murase
and Nayar 94], visual positioning and tracking [Nayar
et al. 94], and temporal inspection of complex parts.
Here, we summarize a few of these applications. The
results demonstrate that the techniques underlying
appearance modeling and matching are general. This
has led to the development of a comprehensive soft-
ware package [Nene et al. 94] for appearance match-
ing that is presently being used by several research
institutions.

2 Computing Appearance Models

We begin by presenting a procedure for acquiring ap-
pearance models. In subsequent sections, this proce-
dure is applied to vision problems.

2.1 The Visual Workspace

Each appearance model is parametrized by the vari-
ables of the vision task at hand. In the case of object
recognition, these could include object pose and illu-
mination parameters. If the objects are non-rigid, de-
formation parameters would serve as additional vari-
ables. In the case of visual tracking applications, the
coordinates of a hand-eye system with respect to a
moving object would be pertinent variables. With-
out loss of generality, we define the variables of a
vision task as the visual degrees of freedom (DOF):

qQ = [fIl,(Izy ~~~~ me]T (1)

where m is the total number of DOF at work. For any
given vector q, the image sensor produces a bright-
ness image:

i = (i, 49, o, in] T (2)

In any given application, q has lower and upper
bounds and its continuous set of values within these
bounds map to a continuous domain of images i(q).
This range of appearances is what we refer to as the
visual workspace of the task. Our approach is to ac-
quire an image set by coarsely sampling the visual
workspace and then produce a compact representa-
tion of the image set that can be used not only to
recognize the discrete appearances in the image set
but also those that lie in between the ones in the set,

l.e. a continuous representation of the entire visual
workspace.

To achieve scale invariance we force all images in an
acquired set to be of the same size. For instance, in a
recognition task an object region is segmented from
the scene and scale normalized [Murase and Nayar
93] to fit a predetermined image size. This ensures
that the recognition system is invariant to magnifica-
tion, i.e. the distance of the object from the image
sensor. It is also desirable that appearance represen-
tation and recognition be unaffected by variations in
the intensity of illumination or the aperture of the
imaging system. This can be achieved by normaliz-
ing each acquired image such that the total energy
contained within is unity: i; = i;/ [ i, ||.

Let the number of discrete samples obtained for each
degree of freedom ¢; be R;. Then the total number

of images is M = H'lrfl R;. The complete image set:

{11, ...... ,ig, ......,i}v[} (3)

can be a uniform or non-uniform sampling of the vi-
sual workspace.

Note that the above image vectors ij represent unpro-
cessed brightness image (barring the normalizations).
Alternatively, processed images such as smoothed im-
ages, first derivatives, second derivatives, Laplacian,
or the power spectrum of each image may be used
instead. In applications that employ depth sensors,
the images could be range maps. The image type is
selected based on its ability to capture distinct ap-
pearance characteristics of the task workspace. Here,
for the purpose of description we use raw brightness
images, bearing in mind that appearance models can
in principle be constructed for any other image type.

2.2 Computing Eigenspaces

Images in the set tend to be correlated to a large
degree since visual displacements between consecu-
tive images are small. The obvious step is to take
advantage of this and compress the large set to a
low-dimensional representation that captures the key
appearance characteristics of the visual workspace. A
suitable compression technique is based on principal
component analysis [Oja 83], where the eigenvectors
of the image set are computed and used as orthogonal
bases for representing individual images. Principal
component analysis has been previously used in com-
puter vision for deriving basis functions for feature
detection [Hummel 79] [Lenz 87), representing hu-
man face images [Sirovich and Kirby 87}, and recog-
nizing face images [Turk and Pentland 91]. Though,
in general, all the eigenvectors of an image set are
required for perfect reconstruction of any particular



image, only a few are sufficient for visual recognition.
These eigenvectors constitute the dimensions of the
etgenspace, or image subspace, in which the visual
workspace is compactly represented.

First, the average c of all images in the set is sub-
tracted from each image. This ensures that the eigen-
vector with the largest eigenvalue represents the sub-
space dimension in which the variance of images is
maximum in the correlation sense. In other words,
it is the most important dimension of the eigenspace.
An image matrix is constructed by subtracting ¢ from
each image and stacking the resulting vectors column-
wise:

p2 ii—c, ig—c, .. ,iM—c} (4)
P is NxM, where N is the number of pixels in each
image and M is the total number of images in the set.
To compute eigenvectors of the image set we define
the covariance matriz:

Q é pPT 5)

Q is N x N, clearly a very large matrix since a large
number of pixels constitute an image. The eigenvec-
tors e; and the corresponding eigenvalues Ay of Q are
determined by solving the well-known eigenstructure
decomposition problem:

/\k er = Qek (6)

Calculation of the eigenvectors of a matrix as large as
Q is computationally intensive. Fast algorithms for
solving this problem have been a topic of active re-
search in the area of image coding/compression and
pattern recognition (see [{Oja 83]). We have used a
fast implementation [Murase and Nayar 92] of the
algorithm proposed by Murakami and Kumar [Mu-
rakami and Kumar 82]. On a Sun IPX workstation
this implementation enables us to compute, for in-
stance, 20 eigenvectors of a set of 100 images {each
128x128 in size) in about 3 minutes, and 20 eigenvec-
tors of a 1000 image set in less than 4 hours. Work-
stations are fast gaining in performance and these
numbers are expected to diminish quickly.

The result of eigenstructure decomposition is a set
of eigenvalues {A; | & = 1,2,..., K’} where {}; >
Az > > Ak}, and a corresponding set of or-
thonormal eigenvectors {e; | k& = 1,2,...,K}.
Note that each eigenvector is of size N, i.e. the
size of an image. These K eigenvectors constitute
our eigenspace; it is an approximation to a complete
Hilbert space with N dimensions. In all of our ap-
plications we have found eigenspaces of 20 or less di-
mensions to be more than adequate.

2.3 Parametric Eigenspace
Representation

Each workspace sample ij in the image set is pro-
jected to eigenspace by first subtracting the average
image c from it and finding the inner product of the
result with each of the K eigenvectors. The result is
a point f; in eigenspace:

f = Ti-e) (M
By projecting all images in this manner, a set of dis-
crete points is obtained. Since consecutive images
are strongly correlated, their projections are close to
one another. Hence, the discrete points obtained by
projecting all the discrete samples of the workspace
can be assumed to lie on a manifold that represents a
continuous appearance function. The discrete points
are interpolated to obtain this manifold. In our im-
plementation, we have used a standard quadratic B-
spline interpolation algorithm [Rogers 90]. The re-
sulting manifold can be expressed as:

f(@) = f(q,q92,.eme 2 qm) (8)

It resides in a low-dimensional space and therefore
is a compact representation of appearance as a func-
tion of the task DOF q. The exact number of task
DOF is of course application dependent. It is worth
pointing out that multiple visual workspaces (for in-
stance, multiple objects in a recognition task) can be
represented in the same eigenspace as set of mani-
folds F={f',£? ..., fF}. In this case, the eigenspace
is computed using image sets of all the workspaces.

[el,eg, ..... ,eK]

The above representation is called the parametric
etgenspace. It posses an important property. Con-
sider two images i, and 1, that belong to the image
set used to compute an eigenspace. Let points f, and
f, be eigenspace projections of the two images. It
is well-known in pattern recognition theory [Oja 83]
[Murase and Nayar 92] that the distance between the
two points in eigenspace is an approximation to the
correlation between the two images:

i =1 P~ | £ = £ |1 (9)

The closer the projections, the more similar are the
images in I2. The eigenspace is an optimal subspace
for computing correlation between images. This mo-
tivates us to develop an appearance representation
based on principal component analysis.

3 Image Recognition

Our goal here is to develop an efficient method for rec-
ognizing an unknown input image i.. A brute force
solution would be to compare the input image with



all images corresponding to discrete workspace sam-
ples. Such an approach is equivalent to exhaustive
template matching. Clearly, this is impractical from
a computational perspective given the large number
of images we are dealing with. Further, the input im-
age ic may not correspond exactly to any one of the
images obtained by sampling the visual workspace; i.
may lie in between discrete workspace samples.

The parametric eigenspace representation enables us
to accomplish image matching in a very efficient man-
ner. Since the eigenspace is optimal for computing
the correlation between images, we can project the
current image to eigenspace and simply look for clos-
est point on the appearance manifold. Image recog-
nition proceeds as follows. We will assume that i,
has already been normalized in scale and brightness
to suit the invariance requirements of the applica-
tion. The average ¢ of the visual workspace is sub-
tracted from i. and the resulting vector is projected
to eigenspace to obtain the point:

f. = [ey, e, ..... ,eK]T(§C -¢) (10)

The matching problem then is to find the minimum
distance d between f, and the manifold f(q):

d ="q"|| f. - £(a) | (11)
If d is within some pre-determined threshold value
(selected based on the noise characteristics of the im-
age sensor), we conclude that the i, does belong to
the appearance manifold f. Then, parameter estima-
tion is reduced to finding the coordinate q. on the
manifold corresponding to the minimum distance d.
In practice, the manifold is stored in memory as a
list of K-dimensional points obtained by densely re-
sampling f(q). The closest point to f. on f(q) (or
even a set of manifolds, F') can be determined either
by exhaustive search (if the list of manifold points
is small), binary search, or indexing. In [Nene and
Nayar 93] an algorithm is developed that results in
near-constant search time of approximately 20 msec
on a Sun IPX workstation. Alternatively, q. can be
determined from f, by training a regularization net-
work of the type described in [Poggio and Girosi 90].

4 Real-Time Object Recognition

Appearance representation has been used for object
recognition [Murase and Nayar 93] [Murase and Na-
var 92]. During model acquisition, each object is
placed on a computer-controlled turntable (see Fig.1)
and its pose is varied about a single axis, namely, the
axis of rotation of the turntable. Most objects have a
finite number of stable configurations when placed on
a planar surface. For such objects, the turntable is
adequate as it can be used to vary pose for each of the

object’s stable configurations. The object is illumi-
nated by the ambient lighting of the environment that
is expected to remain more or less unchanged between
model acquisition and recognition stages. This am-
bient illumination is of relatively low intensity. The
main source of brightness is an additional light source
whose direction can vary. Illumination is varied using
a 6 degree-of-freedom robot manipulator (see Fig. 1)
with a light source mounted on its end-effector. Im-
ages of the object are sensed using a 512x480 pixel
CCD camera and digitized using an Analogics frame-
grabber board. Figure 2 shows four toy cars and
their respective appearance models. For each object,
90 poses and 5 source directions were used (a total
of 450 images, each 128x128 pixels in size after seg-
mentation and scale normalization). The manifolds
reside in 10-D eigenspaces and are parameterized by
a single pose parameter #; and a single illumination
direction parameter 5.

5o ’ et
Figure 1: Setup used to automatically acquire object
appearance models for recognition and pose estima-
tion. The object is placed on a motorized turntable.

Several experiments were conducted to test recogni-
tion and pose estimation [Murase and Nayar 92]. The
high accuracy, repeatability, and efficiency of recog-
nition and pose estimation motivated us to develop
a fully-automated system with 20 complex objects
in its database. These objects vary from smoothly
curved shapes with uniform reflectance, to fairly com-
plex shapes with intricate textures and specularities
[Murase and Nayar 92]. Developing CAD models of
such objects could prove extremely cumbersome and
time-consuming. Both model acquisition and recog-
nition are done in a laboratory environment where il-
lumination remains more or less unchanged. Each ob-
Ject is represented by a curve parametrized by pose in
a single 20-dimensional universal eigenspace [Murase
and Nayar 92].

The recognition system automatically detects signif-
icant changes in the scene, waits for the scene to sta-
bilize, and then digitizes an image (see Figure 3). In
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Figure 2: (a) Four objects and (b) their paramet-
ric appearance manifolds. The manifolds reside in
10-D eigenspace but are display here in 3-D. They
are parametrized by object pose 8, and illumination
direction 8.
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the present implementation, objects are presented to
the system one at a time and a dark background is
used to alleviate object segmentation. The complete
recognition process, including, segmentation, scale
and brightness normalization of object regions, image
projection to eigenspace, and search for the closest
object and pose is accomplished in less than 1 second
on the Sun workstation. The robustness of this sys-
tem was tested using 320 test images of the 20 objects
taken at randomly selected but known poses. All
test images were correctly identified by the system,
i.e. 100% recognition rate, with an average absolute
pose error of 1.59 degrees. In related work [Murase
and Nayar 94], the parametric eigenspace represen-
tation was used to determine illumination conditions
in a structured environment that would optimize the
performance of a recognition system such as the one
described above.
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Figure 3: A real-time recognition system with 20
objects in the database [Murase and Nayar 92]. A
complete recognition and pose estimation cycle takes
less than 1 second on a Sun IPX workstation without
the use of any customized hardware.

5 Robot Positioning and Tracking

For a robot to be able to interact in a precise and in-
telligent manner with its environment, it must rely on
sensory feedback. Vision serves as a powerful com-
ponent of such a feedback system. It can enable a
manipulator to handle task uncertainties, react to a
varying environment, and gracefully recover from fail-
ures. A problem of substantial relevance to robotics
is visual servoing; the ability of a robot to either au-
tomatically position itself at a desired location with
respect to an object, or accurately follow an object
as it moves along an unknown trajectory.

The parametric appearance representation has been
used to develop an effective solution to the visual
servoing problem [Nayar et al. 94]. Our implemen-
tation uses the hand-eye system shown in Figure 4.
First, a sizable image window is selected that repre-
sents the appearance of the object when the robot
is in the desired position. A large set of object im-
ages is then obtained by incrementally perturbing the
robot’s end-effector (hand-eye system) with respect
to the desired position. The appearance manifold in



this case represents the mapping between camera im-
age and robot displacement, i.e. it is parametrized by
the DOF of the robot end-effector.

Figure 4: The hand-eye system used for visual ser-
voing. The end-effector includes a gripper, an image
sensor, and a light source. Using the parametric ap-
pearance representation real-time servoing is accom-
plished without the use of CAD models.

In a positioning or tracking application, each new im-
age is projected to eigenspace and the location of the
projection on the manifold determines the robot dis-
placement (error) with respect to the desired posi-
tion. This information is relayed to the robot con-
troller to drive it to the desired coordinates. In
contrast to most previous visual servoing schemes
positioning and tracking are achieved without prior
knowledge of the object’s shape or reflectance, the
robot’s kinematic parameters, and the vision sensor’s
intrinsic and extrinsic parameters.

Figure 5 shows results obtained for a peg-in-hole in-
sertion task. Three displacement parameters were
used, namely, z. y, and # (rotation in the z-y plane).
During image acquisition the £ and y parameters
were each varied within a =1lcm range, and 4 within
a =10deg range for each (z,y) displacement. A total
of 11x11x1l = 1331 images were obtained and a 5-D
eigenspace computed. The appearance representa-
tion in this case is a three-parameter manifold in 5-D
space. In Figure 5(b) a projection of this manifold
is shown as a surface (z and y are the parameters,
while # = 0) in 3-D eigenspace. 1000 random robot
displacements were used to test positioning accuracy.
The absolute euclidean positioning errors in z-y space
are illustrated by the histogram in Figure 5(c). This
high accuracy was verified by successful insertions of
a peg in the object slot. In [Nayar et al. 94], these
results are taken a step further. The positioning al-
gorithm is embedded in a feedback control loop that
enables the end-effector to track an object as it moves
through an unknown trajectory.

el

0.15
0.05
-0.05

%

ves20r%s,

R .'l,,'"
RRTRATH
RIS

TR

045
04
0 0.3 92
0.1 g7 03 53
(b)
250 )
5D Eigenspace
200
z
g
g 150
é 100
50
0
0 .24 48 72 96 1.2 1.44 168 X
(c) Positioning Error (mm)

Figure 5: Visual Servoing: Peg in hole insertion. (a)
Object with hole and slot. (b) Parametric eigenspace
representation constructed in 5-D but displayed in 3-
D. Displacements are in three dimensions (z,y, ).
(¢) Histogram of absolute positioning error (in mm).

6 SLAM: A Software Library for
Appearance Matching

As is evident from the above results, the paramet-
ric eigenspace representation can serve as the basis
for solving a variety of real-world vision problems.
In view of this, a software package named SLAM
[Nene et al. 94] is developed as a general tool for
appearance modeling and recognition problems in vi-
sion. The package is coded in C++ and uses ad-
vanced object-oriented programming techniques to
achieve high space/time efficiency. It has four pri-
mary modules: image manipulation, subspace com-
putation, manifold generation, and recognition. Im-
age manipulation includes image segmentation, scale
and brightness normalization, image-vector conver-
sions, and provides tools for maintaining large image
databases. Subspace computation, the second mod-



ule, computes eigenvectors and eigenvalues of large
image sets using the method outlined in [Murakami
and Kumar 82]. The manifold generation module
can be used for projecting image (or feature) sets to
subspaces, B-spline interpolation [Rogers 90] of sub-
space projections to produce multivariate manifolds,
dense resampling of manifolds, and orthogonalization
of multiple subspaces. Finally, the recognition mod-
ule includes efficient search implementations [Nene
and Nayar 93] that find manifold points which lie
closest to novel input projections. All four modules
can be accessed via an intuitive graphical interface
built on X/Motif. SLAM has been licensed to sev-
eral academic and industrial research institutions.

Figure 6: The SLAM software package [Nene et al.
94] is developed as a general tool for appearance mod-
eling and recognition problems in vision.
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