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Abstract

Color constitutes an important cue for recognizing
and locating objects in complex scenes. Most of the
existing techniques using color employ only color his-
tograms for object recognition and/or location. Color
histograms are stable but not accurate. In this paper we
study the complementary nature of color histogram and
DCT coefficients with respect to accuracy and stability
and develop a combined method using both histograms
and DCT coefficients. The methods are ezperimentally
evaluated. The combined method has higher stability
and accuracy than using either feature alone.

1 Introduction

Object detection and location has several applica-
tions such as target selection, tracking, retrieval by
image content, etc. The common approaches employed
for this task are matching geometric features [1, 6] and
template matching [13, 15, 18]. Color provides a pow-
erful cue for image matching and has been proposed
for content based image retrieval [5, 7, 11, 14, 16, 21].
Most of these systems employ color histogram match-
ing. Swain and Ballard [17] proposed Histogram In-
tersection and Histogram Backprojection for object
recognition and location. Local histogram intersec-
tion has been proposed in [4] for object location. We
have developed Focussed Color Intersection with active
search [19, 20] for efficiently recognizing and locating
objects irrespective of size. Since histogram ignores
the spatial distribution of colors, these methods are
stable against template misalignments, changes in ori-
entation, occlusion etc. However, this also leads to
inaccurate locations. Combining color histogram and
a feature taking into account the spatial distribution of
color could give both stability and accuracy.

The discrete cosine transform (DCT) [3] used in im-
age compression methods such as JPEG and MPEG [9]

presents one such feature. DCT representation has
been used for efficient eigenvalue decompositions in [12]
and for scene cut detection in [8]. Since the spatial dis-
tribution of colors is taken into account, DCT will be
a more accurate representation than histogram. How-
ever, it will not have the stability of histograms. For
example, template misalignments could result in large
location errors. Two stage template matching meth-
ods [18, 10} have been proposed for reducing computa-
tional cost. In this paper we propose two stage methods
which combine the complementary nature of histogram
and DCT for higher accuracy and stability.

The performance of methods using only color his-
togram or DCT alone are compared in section 2. Al-
gorithms combining both histogram and DCT are pre-
sented in section 3. Experimental results are given in
section 4 and conclusions in 5.

2 Single Feature Methods

The problem of recognizing and locating a model’s
instance in an image is essentially to determine the lo-
cation in the image at which the model, at some scale,
matches best with a part of the image. For best results
the algorithm has to be accurate and stable. In this
section we evaluate the accuracy and stability of his-
togram backprojection and focussed color intersection
which uses color histograms and focussed DCT match-
ing which uses DCT coefficient vectors.

The following abbreviations shall be used.

BP Histogram Backprojection
FCI Focussed Color Intersection
FDCT Focussed DCT Matching

BP+FDCT  Combination of BP and FDCT
FCI+FDCT Combination of FCI and FDCT

Also by a model we shall mean the reference image
of the model.



2.1 Histogram Backprojection (BP)

Histogram backprojection [17] assigns a confidence
value C(z,y) to each location in the image as

HY

where HM is the histogram of the model, HY is the his-
togram of the image and pixel p;, maps to histogram
bin i. The peak of the smoothed confidence values gives
the location of the object.

2.2 Focussed Color Intersection (FCI)

Focussed Color Intersection evaluates the match be-
tween the model and parts of the scene taking into ac-
count all possible sizes and locations [19]. This is done
by scanning the scene at different resolutions with a
fixed size window. Let the given image be of N x N
pixels. Let p’;y denote pixels belonging to the image
resized to k x k pixels. Consider scanning the images
using a w X w pixels window shifted by s pixels along
one direction at time. Then the set of focus regions are
given by

REY} where k = w,w+ Ak,w+2Ak,...,N
ij
) k—w | k—w
1 = 0,...,—, §=0,...,
s
RE = {pk, suchthat si <z < si+w,

sj <y < sj+w}

We shall refer to Ak as the size parameter and to s
as the shift parameter. The histogram intersection [17]
of a focus region R and a model M with normalized
histograms H® and HM respectively is defined as

b
Interg = Z min{HE, HM}
i=1

where b is the number of histogram bins. A confidence
value C(z,y) is assigned to each (z,y) in the given
image as

max Interp

Clx,y) =
( ) RER(z,y)

where R(z, y) is the set of all focus regions whose center
points corresponds to location (z,y) in the N x N im-
age. Locations not corresponding to the center of any
focus region are assigned a confidence value of 0. The
location with the highest confidence gives the object’s
location in the image.

2.3 Focussed DCT Matching

In focussed DCT matching the Euclidean distance
between the normalized DCT coefficient vectors of the
model and the focus regions is used as a measure of
match confidence. Let Dist g denote the Euclidean dis-
tance for focus region R. And let R(z,y) denote the set
of all focus regions whose center corresponds to (z,y)
in the given image. Then a confidence value is assigned
to a location (z,y) as

Cum(z,y) =2— max Distg

ReR(z,y)

The locations not corresponding to the center of any
focus region are assigned a confidence measure of zero.
The point (z,y) with the highest confidence value gives
the location of the object. The normalized DCT coef-
ficient vectors are constructed as follows.

The DCT of an N x N 2-dimensional signal p,, may
be defined as

=
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where z, y are spatial coordinates in the signal domain,
u, v are coordinates in the transform domain and t,,
are the DCT coefficients. The coefficient too denotes
the static component of the signal. t9; and t;o denote
the lowest frequencies along y and z directions respec-
tively. Increasing indices represent signal components
with higher frequencies.

Following standard image compression algorithms,
we adopt a block size of 8 x 8 for computing the DCT
coeflicients. This requires that the window size w and
the model image size be multiples of 8. For an 8 x 8
block we will get 64 coeflicients for each color com-
ponent. Since the lower frequency components carry
most of the relevant information it would be sufficient
to construct the feature vector using a number of lower
frequency coefficients out of the total 64. The sets
{too}, {to1, t10}, {t20, t11,t02},. .., {ter, trs}, {tr7}
constitute the sets of coefficients in order of increas-
ing frequency. If n is the number of lowest frequency
coeflicient sets chosen then the DCT feature vector is
constituted by t., such that « +v < n. The coefficient
selection maps for n = 1,4 and 6 are shown below.

- A ‘1’ indicates that the coefficient in that position is

selected and ‘0’ indicates that it is not selected.
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Figure 1. Average location error vs. number of low-
est frequency DCT coefficient sets
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The average location error for n ranging from 1 to 8,
with the size parameter Ak and shift parameter s fixed
at 4 pixels are shown in figure 1. Figure 1 indicates that
n > 3 would be a good choice and n = 4 was used in
all other experiments. The DCT coefficient vector for
a focus region (model) is constructed using 4 lowest
frequency coeflicients of all color components in each
8 x 8 block in the focus region (model). This vector
is normalized (Euclidean norm = 1) and used as the
feature for matching.

FDCT may be applied to JPEG and MPEG com-
pressed data without full reconstruction using the
method in [2]. The DCT feature vector of focus re-
gions aligned with the 8 x 8 blocks will be readily avail-
able. For other focus regions, not aligned with the 8 x 8
blocks, the DCT coefficients can be derived using the
method in [2]. However, for FDCT the DCT coeffi-
cients of the image at different resolutions are required.
Moreover the complexity of the method given in [2] is
not much different from performing full reconstruction
and DCT computation. Therefore, in general, the gain
in computational effort may not be large.

2.4 Comparative Results

The average location error obtained using BP, FCI
and FDCT over 300 images, each of 128 x 128 pixels,
are shown in figure 3. Two sample images and models
are shown in figure 2. The location error was computed
as the Euclidean distance between the manually deter-
mined actual location and the location determined by
the algorithm.

image 1 image 2

Figure 2. Two sample images and models
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Figure 3. Comparison of algorithms BP (histogram
backprojection), FCl (focussed color intersection)
and FDCT (focussed DCT matching)

The RGB histogram with 4096 bins were used for BP
and FCI. In BP, Gaussian smoothing with variance 6
and a kernel size of 32 x 32 was employed for smoothing
the confidence values. Focus regions for FCl and FDCT
were constructed with a 32 x 32 pixel scanning window
and the size parameter was fixed at 4 pixels.

The results are plotted in figure 3 for s ranging from
2 to 40. When a low value of s is used, the image is
densely scanned and an accurate algorithm will deter-
mine the correct location. At low values of s the im-
age is scanned densely and the computational effort is
hight. Higher s implies sparsely searching the image at
low computational effort. An accurate algorithm will
have low error at low s and a stable algorithm will de-
grade gracefully with increasing s. From the results,
the stability and accuracy of the algorithms may be
summarized as follows:

Algorithm | Accuracy | Stability
BP low medium
FCI medium | high
FDCT high low




3 Combining Histogram and DCT

From section 2.4 we see that color histogram based
methods are more stable than DCT coeflicient match-
ing and the latter is more accurate. Figure 4 shows
the normalized confidence values associated to differ-
ent locations in image 2 of figure 2 given model 2 of
figure 2. The confidence values are quantized into 10
different levels. Lighter regions have higher confidence
values and darker regions have lower confidence values.

(a) (o) {c)

Figure 4. Confidence values given by algorithms BP
(histogram backprojection), FCI (focussed color in-
tersection) and FDCT (focussed DCT matching)

From the distribution of confidence values the fol-
lowing may be observed:

BP Pixels having same color as pixels in the model
are given high confidence values. In general, the
accuracy and stability would depend greatly on
background pixels and object sizes.

FCI There is a single large region with highest con-
fidence. There is one contiguous region for one
confidence level which is surrounded by a region
having the next lower confidence level. This indi-
cates high stability.

" FDCT There is a small region with highest confidence

level very near the correct location of the object.
For the next confidence level there are three dis-
joint, widely separated regions. If the highest con-
fidence region is missed (say due to template mis-
alignment) then a totally false location may be
identified.

The unstable nature of FDCT can be avoided if
FDCT is restricted to an area near the actual location.
Both BP and FCI associates high confidence values to
areas near the actual location. The combined meth-
ods restricts FDCT to such areas and thereby provide
higher stability and accuracy.

3.1 Two Stage Methods

The combined methods involves two steps - can-
didate selection using histogram and matching candi-
dates against the model using focussed DCT matching.
The scheme is shown in in figure 5.

Image
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Figure 5. The combined methods

We consider candidate selection using either BP or
FCI in two algorithms BP+FDCT and FCI+FDCT.
Using algorithm BP the confidence values are obtained
as given in section 2.1. For candidate selection using
FCI the confidence values of different locations in the
image are defined as follows.

C(z,y) = max Interg

ReR(z,y)

where R(z, y) is the set of all focus regions covering lo-
cation (z,y) in the scene. This definition associates a
confidence value for all locations in the image. Since
accurate location is not the objective, FCI for candi-
date selection can be applied with large values of size
parameter Ak and shift parameter s. This will result
in a flat distribution of the confidence values. Hence,
Gaussian smoothing with kernel size 16 x 16 and vari-
ance 3.0 was used for smoothing the confidence val-
ues obtained by FCI. The confidence values obtained
by BP or FCI are smoothed and normalized such that



) Npcr | Error
0.7 930 5.6
BP+DCT 0.6 1431 4.3

0.4 2263 3.5
0.999 849 4.0
FCI+DCT | 0.99 1367 3.5
0.95 2502 3.4

Table 1. Results of BP+DCT and FCI+DCT for
different candidate selection thresholds

the highest confidence value is 1.0. All locations with
the smoothed and normalized confidence value greater
than a threshold 0 are selected as candidate locations.

In the second step the FDCT algorithm is applied to
the candidate locations to determine the final location.
FDCT is applied with small values of s for obtaining
accurate results. Since the candidate locations will be
few in number the number of focus regions matched
and consequently the computational effort will be low.

3.2 Active Search for Candidate Selection

Active search [20] have been proposed for efficiently
determining the best matching focus region without
evaluating the histogram intersection at all focus re-
gions. The search is directed by upper bound esti-
mates. The algorithm decides the next focus region to
be matched based on the histogram intersections of fo-
cus regions matched till then. The search concentrates
on focus regions having higher histogram intersections.
By this process, substantial gain in computational ef-
fort is achieved without loss of accuracy.

Active search may be applied for candidate selec-
tion with an upper bound cutoff equal to the threshold
@ times the highest histogram intersection value en-
countered by the algorithm. It is clear that this will
ensure that all candidates are identified. At the same
time large number of focus regions will not be matched
reducing the computational effort for candidate selec-
tion.

4 Experimental Results

The images and models used in the present exper-
iments are the same as those used for experiments in
section 2.4. We shall denote the average location error
by Error and the number of DCT coeflicient matches
and histogram intersections evaluated by Npcr and
Ny respectively.

In table 1 we show the results obtained for different
values of the candidate selection thresholds with shift
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Figure 6. Comparison of algorithms BP, FCI, FDCT,
BP+FDCT and FCI4+FDCT

parameter s = 2 and size parameter Ak = 4. From
the results we observe that, for similar values of Npcor
FCI+FDCT has lower error than BP+FDCT. Candi-
date selection thresholds of 0.6 for BP+FDCT and 0.99
for FCI4+FDCT are adopted in other experiments. It
may be noted that, for these thresholds, the number
of focus regions at which DCT matching is done are
approximately same for both algorithms.

The results obtained using the combined algorithms
for different values of the shift parameter are plot-
ted given in figure 6. The candidate selection step
in FCI+FDCT employed size parameter Ak = 8 and
shift parameter s = 16. In the second step, FDCT was
applied to the candidate locations with size parame-
ter Ak = 4, for both BP+FDCT and FCI4+FDCT.
The shift parameter used was varied from 2 to 16 in
steps of 2. The average location errors for BP, FCI
and FDCT are also reproduced from figure 3 for com-
parison. It may be observed from figure 6 that the
average location error and the increase in error with
increasing s are both less for the combined algorithms.
Thus BP4+FDCT and FCI+FDCT are more stable and
accurate than BP, FCI or FDCT.,

In table 2 we compare the computational effort
(Nper + Ngp) and the average location error of all
the five methods. It may be observed that for low val-
ues of s active search is very efficient and only about
15% of the total number of focus regions are matched
by FCI. For candidate selection with shift parameter
16, FCI matched only less than 50% out of the total
231 focus regions.

The results in table 2 indicate the higher accuracy
and stability of the combined methods at low compu-



method shift parameter 2 | shift parameter 10
Ngr+ Error Nyr Error
Npcr Nper

BP - 12.0 - 12.0

FCI 3116 7.1 612 7.2

FDCT 20825 5.4 935 16.0

BP+DCT 1431 4.3 59 5.5

FCI+DCT 1475 3.5 165 4.5

Table 2. Results of combined method for two values
of shift parameter

tational effort. For s = 2 BP+FDCT and FCI4+FDCT
achieve higher accuracy at less than 10% of the effort
of FDCT. At higher values of s also the combined algo-
rithms have higher accuracy and lower computational
effort. Thus, BP+DCT and FCI+DCT are ideally
suited for fast, stable and accurate object recognition
and location. FCI4+FDCT provides higher accuracy for
small amount of extra computational effort.

5 Conclusion

We have studied the complementary nature of color
histogram and DCT coefficients for locating colored ob-
jects. Two stage methods combining histogram and
DCT have been proposed and shown to be more ac-
curate, stable and computationally efficient. Active
search for improving the efficiency of candidate selec-
tion using focussed color intersection has also been dis-
cussed.
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