
VOL. E100-A NO. 3
MARCH 2017

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.
The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.
Distribution by anyone other than the author(s) is prohibited.



854
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.3 MARCH 2017

PAPER
Human Wearable Attribute Recognition Using
Probability-Map-Based Decomposition of Thermal Infrared Images

Brahmastro KRESNARAMAN†a), Student Member, Yasutomo KAWANISHI†, Daisuke DEGUCHI††,
Tomokazu TAKAHASHI†††, Members, Yoshito MEKADA††††, Ichiro IDE†, Senior Members,

and Hiroshi MURASE†, Fellow

SUMMARY This paper addresses the attribute recognition problem, a
field of research that is dominated by studies in the visible spectrum. Only
a few works are available in the thermal spectrum, which is fundamentally
different from the visible one. This research performs recognition specif-
ically on wearable attributes, such as glasses and masks. Usually these
attributes are relatively small in size when compared with the human body,
on top of a large intra-class variation of the human body itself, therefore
recognizing them is not an easy task. Our method utilizes a decomposi-
tion framework based on Robust Principal Component Analysis (RPCA) to
extract the attribute information for recognition. However, because it is dif-
ficult to separate the body and the attributes without any prior knowledge,
noise is also extracted along with attributes, hampering the recognition
capability. We made use of prior knowledge; namely the location where
the attribute is likely to be present. The knowledge is referred to as the
Probability Map, incorporated as a weight in the decomposition by RPCA.
Using the Probability Map, we achieve an attribute-wise decomposition.
The results show a significant improvement with this approach compared
to the baseline, and the proposed method achieved the highest performance
in average with a 0.83 F-score.
key words: thermal infrared, wearable attribute, recognition, decomposi-
tion, probability map

1. Introduction

Security surveillance systems are very commonly used.
Nowadays, the usage is not only limited to commercial build-
ings, but also residential buildings. These systems play a
vital role in the community, as they serve as a deterrent to
criminal activity and may be used to help search or identify a
criminal. When performing the search or identification, the
attributes of that person are important to look at, and these
attributes are usually varied. Surveillance cameras generally
are located at the ceilings to cover a wider view of the area.
However, there are also cases that place cameras in relatively
small areas, for example, small alleys, near the entrance to a
door, hallways, etc.

In general, surveillance systems employ cameras that
work in the visible spectrum; where human eyes see. In
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this spectrum, illumination is a big factor that needs to be
considered. Without sufficient illumination, the captured im-
age might not have enough information which is often vital
for the success of any recognition method used. Therefore,
surveillance in night-time or in poorly lit areas are chal-
lenging tasks. Situations like these make a thermal infrared
camera a better option.

A thermal infrared (or simply thermal) camera captures
images in thermal infrared spectrum, a portion of the in-
frared spectrum. A thermal infrared camera produces an
image by capturing infrared radiation of an object, therefore,
illumination is not an issue. The intensity of a pixel in a
thermal infrared image depends on the corresponding tem-
perature of the object. This is the main reason why a thermal
infrared camera can be a better alternative in night-time or in
poorly lit areas. Figure 1 shows image examples of a person
in visible and thermal infrared spectra with and without the
presence of wearable attributes.

The term “attribute” itself has a broad meaning. It is
defined as a trait or an element of an object. Attributes of
a human can be his/her age, gender, race, and so on. For
simplicity, these attributes will henceforth be referenced as
non-wearable attributes. Meanwhile, this paper focuses on
wearable attributes, or objects that people wear. Examples
of wearable attributes are glasses, hat, backpack, and so on.
Figure 1(b) shows examples where a person is presented with
multiple wearable attributes.

A person shown in Fig. 1(b) is a security risk in places
such as banks, because the face is occluded by wearable
attributes. Therefore, the information of what wearable at-
tribute a person is wearing is equally important to avoid a
compromise in security. This research aims to recognize the
wearable attributes of a person in thermal infrared image.
This recognition task can be used for searching people based
on attributes they are wearing or to warn security about the
usage of a certain attribute.

In regards to the recognition of non-wearable at-
tributes, many researches have been done up to now. To
name a few, classifications of human expressions [1], [2],
race/ethnicity [3], and gender [4], [5]. On the other hand,
the researches done to recognize wearable attributes usually
include recognition of non-wearable attributes. Kumar et
al. [6], [7] utilize various attributes for face verification be-
tween two images. Other researches [8]–[11] use images
taken from surveillance cameras to find people based on
certain attributes. Attributes are also used for person re-
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Fig. 1 Image examples with and without wearable attributes in visible (left) and thermal infrared
spectra (right).

Fig. 2 Example of data with attribute as minority.

identification, for example, works by Layne et al. [12] and
Khamis et al. [13].

So far, however, the aforementioned researches are all
conducted in the visible spectrum. There are only a small
number of attribute recognition studies available in the ther-
mal infrared spectrum. For example, recognition of facial
expressions [14], [15] and a small section of eyewear (glasses
and sunglasses) detection [9]. To the extent of our knowl-
edge, there are no other works that focus only on wearable
attributes in the thermal infrared spectrum.

There are two significant problems to perform recogni-
tion of wearable attributes in the thermal infrared spectrum.
First, in comparison to the size of human body, the size of
attributes are relatively small. Furthermore, intra-class vari-
ation of human body is large. Due to these limitations, it is
difficult to recognize these attributes in the thermal infrared
image. Some works on attribute recognition mentioned pre-
viously focus on a smaller region from the image, e.g. the
face region.

In this research, we perform recognition by using an
image decomposition approach. The decomposition is the

key process that produces two images with a size identical
to the original. The decomposed images are: one with the
wearable attribute information only, and one with the human
body without the wearable attributes. We employed the
idea of majority and minority to achieve this decomposition,
where a certain condition needs to be fulfilled. The condition
is that the similarity between the observations needs to be
relatively high to serve as the majority. This leads to the
situation where the attributes can be separated because they
are the minority — a noise — in the data.

To give a clearer idea, assume a collection of thermal
infrared images of people. Presented in the collection are
human images with no wearable attribute as the majority.
If there is a human wearing an attribute in some images,
then these attributes will be evaluated as the minority. Fig-
ure 2 visualizes this with an example. The mask attribute in
Fig. 2(b) and backpack attribute in Fig. 2(c) are considered
as the minority in face and torso regions, respectively. Under
this assumption, the extraction of the attributes is performed
by means of decomposition. Therefore, the method proposes
control over the data matrix that will be decomposed.
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We have previously proposed the decomposition with
Robust Principal Component Analysis (Robust PCA or
RPCA) [16] as the basis. RPCA is a modification to Prin-
cipal Component Analysis (PCA), where the problem of
decomposition can be classified according to the approaches
developed for it [17]. They are:

• RPCA via Principal Component Pursuit (PCP) [18]
• RPCA via Outlier Pursuit [19]
• RPCA via Iteratively Reweighted Least Squares [20]–

[22]
• Bayesian RPCA [23] and its variation [24]
• Approximated RPCA (GoDec [25])

In [16], we constructed the data matrix in such a way
that it contains multiple images with no attribute in it as the
base data, and one input image that will be either trained
or recognized. This arrangement ensures that any attribute
is considered as noise by the RPCA and extracted from the
input image. Note that the input image may contain multiple,
single, or no attributes.

However, there is one drawback that can be perceived
in [16]. Since the decomposition was performed without
any prior knowledge, there are still some details of clothing
and other noise extracted along with the attribute. On the
same note, when there are multiple attributes in one image,
all of the attributes information is extracted. In this case,
the recognition of the desired attribute is hampered by the
existence of others.

These problems lead to the idea of an attribute-wise
decomposition. By extracting the information only in an
attribute-specific region, a more focused decomposition can
be achieved. We propose the usage of prior knowledge to
tackle the problems. The prior knowledge we utilized is the
location where the attribute is likely to be present, which is
used as a weight in the decomposition process. Therefore, an
attribute-wise decomposition can be achieved. In this paper,
we modified RPCA with the introduction of a probability
prior.

The usage of a probability prior is very beneficial in
situations where there are minimum to no change in view-
point or angle, for example, near the entrance of a door. In
these situations, we can assume that the images contain the
upper body region and taken frontally. These images can
be obtained from a prior detection step performed on the
surveillance video. This step is not covered in our paper, but
it should not be difficult, because the presence of human is
apparent in the thermal infrared spectrum.

The remaining parts of the paper proceeds in the fol-
lowing. Section 2 elaborates the proposed idea for this re-
search, which is the usage of prior knowledge to achieve an
attribute-wise decomposition. Section 3 will then describe
the detailed implementation of the proposed method. Exper-
iments and their analyses are explained in Sect. 4, and Sect. 5
concludes the paper.

2. Decomposition by Robust PCA with Probability Map

This section will cover the approach proposed in this paper,
which makes use of prior knowledge to achieve an attribute-
wise decomposition. However, we first explain in detail
the Robust Principal Component Analysis, the basis of our
decomposition.

2.1 Robust Principal Component Analysis (RPCA)

Robust Principal Component Analysis (RPCA) is the method
used to perform the decomposition. Based on the popular
Principal Component Analysis (PCA), RPCA is made to
be robust towards corrupted or noisy observations in the
data. This is due to the fact that PCA encounters problems
when dealing with data that contain outliers and/or noisy
observations.

Robust PCA handles the corrupted/noisy observations
by separating them from the data. We make use of this
decomposition capability for our approach, by considering
the wearable attributes as noise instead of a part of the hu-
man characteristics. Consequently, wearable attributes in
a human image can be decomposed and only the extracted
attribute information is used for the recognition.

An idealized version of RPCA was introduced by Can-
des et al. [18], aimed to decompose a collection of obser-
vations M to a low-rank matrix L and a sparse matrix S, as
follows:

M = L + S, (1)

where sparse matrix S contains the noisy/corrupted part of
the observation in the data, and its magnitude can be arbi-
trarily large. Most researches focus on the low-rank com-
ponents, however, the proposed method utilizes the sparse
matrix instead.

There are various techniques to solve RPCA. For this
purpose, the proposed method utilizes Principal Component
Pursuit (PCP) [18]. Even though some adaptations have
been proposed for PCP such as Stable PCP [26] and Local
PCP [27], it is still one of the best techniques among its
peers [17], [28].

Assume a data matrix M where the observations are
represented in column vector. PCP solves the following
optimization problem:

min
L,S
∥L∥∗ + λ∥S∥1 s. t. L + S = M, (2)

where ∥ · ∥∗ denotes the nuclear norm, the sum of the sin-
gular values given a matrix. ∥ · ∥1 is the l1-norm with the
condition that the matrix is treated as a vector. λ is the bal-
ance parameter. The rule of thumb for λ is shown in Eq. (3)
where m and n represent the number of rows (dimensions)
and columns (observations) of matrix M , respectively.

λ =
1

√
max(m, n)

(3)
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In most of the cases, the value of λ does not need to be
adjusted except when prior knowledge is available. PCP is
able to obtain the low-rank and the sparse matrices of a data
matrix under minimal assumptions. These assumptions are:
the low-rank matrix L is not sparse, the sparse matrix S does
not have low rank, and the usage of the rule of thumb for the
λ value.

2.2 RPCA via Principal Component Pursuit (PCP) with
Probability Map

The main idea of the proposed method is to further extract
the information of an attribute with prior knowledge, in the
region where it likely presents. As an example, to recognize
the “glasses” attribute, the only region that we need to check
is the region around the eyes. Even if there are “glasses” in
another area of the body, for example, in a breast pocket, it
is not necessary to recognize them.

Based on this idea, we propose RPCA via Probability
Map - Principal Component Pursuit (PM-PCP). The Proba-
bility Map is a representation of how likely an attribute will
be present in the region of a thermal infrared human image.

As mentioned previously, the proposed method utilizes
the sparse matrix and disregards the low-rank representation.
The assumption of the decomposition problem with PM is:

M = L + Pc ◦ S, (4)

where Pc is the Probability Map created for attribute c,
and A ◦ B denotes an element-wise multiplication between
matrices A and B. The Probability Map Pc is used as a
weight of the sparse matrix in the decomposition, extracting
the attribute c where it most likely would be, represented
by Pc ◦ S. At the same time, it penalizes non-attribute
information in the region mistakenly extracted along with
the attribute information. Therefore, information other than
the attribute c is not extracted and left in L. To achieve this,
first, the original condition in Eq. (1) is modified with the
PM as follows:

M = L + (1 − Pc) ◦ S + Pc ◦ S. (5)

Equation (5) contains two terms of the sparse matrix S;
the first one represents sparse entries excluding the attribute
c and the second one contains the attribute c only. Since
we only need the information of attribute c from the second
sparse matrix term, L and (1−Pc)◦S can be grouped together
as L′, changing the decomposition problem to:

M = L′ + Pc ◦ S. (6)

In this case, the L′ contains both the low-rank represen-
tation and noise from the sparse matrix, information which
can be discarded because it is not necessary for recognizing
attribute c. On the other hand, Pc ◦ S contains the infor-
mation of attribute c from a specific region based on the
Probability Map Pc which will be used later for recognition.

As we can see, the assumption we made earlier in Eq. (4)
holds true. Therefore, the original minimization problem by

PCP (Eq. (2)) is modified to incorporate the weighting by the
Probability Map, shown in Eq. (7).

min
L′,Pc◦S

∥L′∥∗+λ∥Pc◦S∥1 s. t. L′+Pc◦S = M (7)

It is important to note that although the Probability Map
is incorporated and hence the minimization problem is mod-
ified, the original algorithm used for solving the PCP can still
be used with a slight change. The reason is because the PM
is constant for each attribute and it does not affect the conver-
gence. The only difference is that there is an element-wise
multiplication on the sparse matrix by the Probability Map.
Algorithm 1 shows the PM-PCP algorithm in Appendix.

3. Recognition Framework by RPCA via PM-PCP

The most important modification in this framework is the
decomposition on a more focused region. This section de-
scribes the recognition framework in a more detailed fashion.
The process flow of the framework can be seen in Fig. 3.

First, we explain the creation of the Probability Map
(PM) which is utilized to customize the decomposition of a
specific attribute. Next, the decomposition process by RPCA
via PM-PCP is explained and followed by the training and
recognition of the classifier. Note that the classifier utilizes
the results of the decomposition.

It is important to note that the thermal infrared images
utilized in the process uses the “hotblack” color scheme; It is
a monochrome color scheme that considers the temperature
captured in the pixel, where the hotter the temperature, the
closer the pixel value is to zero.

3.1 Creation of Probability Map (PM)

The Probability Map created in this framework is unique to
one attribute. In order to create the Probability Map, pos-
itive samples of the specific attribute are necessary. These
positive samples indicate that the desired attribute is present
in the images, otherwise, the images are negative samples.

The data used for the training phase is represented as
D = (d1, d2, · · · , dK ), where K is the number of training ob-
servations from all attributes. For attribute c ∈ {c1, c2, . . . },
the positive samples are taken from the training data and
represented as Uc = (uc

1, u
c
2, · · · , u

c
I ) where I is the number

of positive observations of attribute c.
Depending on the attribute, one or more rectangular

bounding boxes are annotated in the image. For each pos-
itive image of attribute c with a size of e × f [pixels], the
probability value of each pixel is pci (e, f ) = 1 for pixels
within the rectangular regions and pci (e, f ) = 0 otherwise,
where i = 1, 2, . . . , I. After the annotation is performed on
all of the positive images, the probability of attribute c per
pixel are calculated by:

pc (e, f ) =
1
I

I∑
i=1

pci (e, f ). (8)

The Probability Map pc is a pixel map with a size of
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Fig. 3 Process flow of the recognition framework.

Fig. 4 Example of thermal image and various Probability Maps (PMs).

e × f [pixels] of which the pixels value is the probability
calculated in Eq. (8) for attribute c, ranging from 0 to 1.
In order to use the PM, pc needs to be rearranged to a
column vector pc and duplicated n times so it has the same
dimension as M , which is m × n. As mentioned previously,
m represents the number of rows (dimensions), which is
m = e × f , and n is the number of observations. This
is represented by Pc = (pc

1, p
c
2, · · · , p

c
n). Figure 4 shows

examples of Probability Maps of various attributes.

3.2 Decomposition and Recognition Process

In the beginning of the decomposition process, images that
have no wearable attribute are categorized in vector form as
base data and represented as B = (b1, b2, · · · , bJ ) with J
observations. The base data is used both in the training and
the recognition phases. Each phase is explained further in
their respective subsections.

3.2.1 Training Phase

The training data of all attributes D = (d1, d2, · · · , dK ) in-
troduced previously are divided into multiple training data

per attribute Qc = (qc
1, q

c
2, · · · , q

c
H ) where H ≤ K . Note

that Qc has both positive and negative samples of attribute c.
This attribute-specific training data Qc will then be decom-
posed. Therefore, for the training of attribute c, PM-PCP is
used to solve:[

B qc
h

]
= Mh = L′h + (Pc ◦ S)h, (9)

where

(Pc ◦ S)h =
[
sc1 · · · scJ xc

h

]
. (10)

The entry xc
h

is the sparse representation that corre-
sponds to qc

h
. The decomposition process of training data

is performed H times, and the sparse results are grouped
together as X c = (xc1, x

c
2, · · · , x

c
H ) for the training of the

classifier.
Since the training data X c = (xc1, x

c
2, · · · , x

c
H ) contains

positives and negatives of attribute c, any method can be
used as the classifier in this recognition framework. Note
that one classifier is trained for each attribute, and in this
case, we trained for attribute c. As an example, for a binary
classifier, we provide both the positive and negative samples
of attribute c until it is capable to classify them. When the
classifier is trained, it marks the end of the training phase.
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3.2.2 Recognition Phase

To be able to recognize attribute c in an input thermal image
t, PM-PCP needs to solve the following:[

B t
]
= Mt = L′t + (Pc ◦ S)t, (11)

where

(Pc ◦ S)t =
[
sc1 · · · scJ yc

]
. (12)

Note that Eq. (12) includes an entry yc , the sparse rep-
resentation of t. This entry is used as the input for the clas-
sifier, which has been trained for attribute c. The result of
the recognition test shows whether the attribute c is present
in t or not. For example, in the case of a binary classifier,
the output will be 1 when the attribute c is present, and 0,
otherwise.

4. Experiments

In this section, we will present the experiments conducted
to evaluate the capability of the proposed method. First, we
explain the dataset that is used, including various attributes
present. Then, we describe details of the experimental setup,
as well as the experiments. The results and analysis are
provided at the end.

4.1 Dataset

We used a dataset from [16], a private dataset we created for
this research, since a publicly available dataset that contains
various attributes in thermal images and details of the data
capture settings is hard to come by. The dataset contains a
total of 408 frontal thermal infrared images from fourteen
people, with up to seven different wearable attributes per
person. The attributes available in the dataset and the number
of positives available can be seen in Table 1.

We used AVIO’s TVS-500EX camera [29] for the cre-
ation of the dataset; a camera that has the capability to capture
both thermal and visible images simultaneously. The size of
the image captured in thermal infrared is 320 × 240 pixels.

Table 1 Distribution of the seven wearable attributes in the dataset.

Attributes # of images

No attribute 28

Glasses 168

Mask 168

Hat 112

Helmet 80

Hoodie 40

Shoulder bag 48

Backpack 40

The camera can capture infrared wavelength that ranges from
8 to 14 µm.

The images were taken indoors at room temperature
(around 22–25° Celsius), while the camera captures infrared
radiation whose temperature ranges from 25 to 36° Celsius.
Subjects were standing around 3.0 to 3.5 m from the camera,
and only the upper region of the body was captured by the
thermal infrared camera. As shown in Fig. 5, images in the
dataset are using the “hotblack” color scheme. This means
the closer the pixel is to 0, the hotter the temperature is.
We cropped the human body regions manually as part of the
preprocessing. The average size of the cropped region is
140 × 204 pixels.

4.2 Experimental Setup

To evaluate the capability of the proposed method, we com-
pared the recognition performance. The classifier of choice
for this experiment was Support Vector Machine (SVM) [30],
with the decomposition performed on a pixel value. The ex-
periment was conducted with a leave-one-person-out cross-
validation. The way the data was divided ensures the training
and test data do not intersect.

As a comparison, we perform recognition using other
methods, as follows:

• No Decomposition: Thermal images are directly used
for training and testing of the classifier without the de-
composition. This method serves as the baseline.

• Conventional Average: First, we calculate the average
from the base data B = (b1, b2, · · · , bJ ), and represent it
as b̄. This average serves the same way as the base data,
to “decompose” both the training and the test data. The
“decomposition” is performed by subtracting b̄ from
the input, instead of using the PM-PCP.

• Conventional PCA: Principal Component Analysis
(PCA) is utilized to obtain the low rank version of test
data t. From the base data B = (b1, b2, · · · , bJ ), the
projection matrix V is calculated by PCA. The test data
t is projected to and back from the Eigenspace, repre-
sented by t̃. The “decomposition” is performed between
the low rank version t̃ and the test data t itself by means
of subtraction.

• RPCA via PCP: The decomposition method proposed
in our previous work [16].

• Post-PCP PM: First, the decomposition is performed
just like in [16]. After the decomposition, the Probabil-
ity Map is applied on the sparse entry that corresponds
to the input. This is a simpler version of using the
Probability Map without modifying the RPCA via PCP
problem.

For each attribute, both positive and negative samples
are fed to all of the methods. The decomposition results are
forwarded to the SVM. Let us assume we want to recognize
“glasses” attribute. Therefore, the positive samples are im-
ages where “glasses” is present and the negative samples are
images where “glasses” is not present. When SVM success-
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Fig. 5 Image examples from the dataset.

Table 2 Recognition results of the various methods evaluated in F-Score. Bold values mark the
highest value in their respective column.

Methods
Attributes Average over attributes in:

Glasses Mask Hat Helmet Shoulder bag Backpack Head region Torso region All regions

No Decomposition 0.607 0.603 0.471 0.357 0.222 0.200 0.51 0.21 0.41

Conventional Average 0.834 0.988 0.551 0.800 0.538 0.849 0.79 0.69 0.76

Conventional PCA 0.854 0.985 0.476 0.645 0.698 0.892 0.74 0.79 0.76

RPCA via PCP [16] 0.861 0.982 0.502 0.754 0.723 0.947 0.77 0.84 0.79

Post-PCP PM 0.918 0.997 0.581 0.843 0.675 0.841 0.83 0.76 0.81

RPCA via PM-PCP (proposed) 0.919 0.991 0.623 0.868 0.692 0.868 0.85 0.78 0.83

fully recognizes “glasses” from a positive sample (output 1),
it is a True Positive case. A True Negative case happens when
SVM recognizes that there is no “glasses” from a negative
sample (output 0). Based on this binary output, precision
and recall can be calculated, and consequently, F-score. The
F-score is used to evaluate the performance of each method.

4.3 Results and Analysis

Table 2 shows the recognition results of the experiment. We
provide results of each attribute and average over attributes
on the head region, torso region, and as a whole. Compared
to the baseline, the approach of performing decomposition on
the thermal infrared images shows a significant performance
increase.

Unexpectedly, the results of both Conventional Average
and Conventional PCA methods are relatively close to the
decomposition by RPCA via PCP. Overall, the decomposi-
tion via PM-PCP achieves the highest performance with an
average of 0.83 F-score, outperforming all the other meth-
ods. Coming in second is the Post-PCP PM method, which
confirms the usefulness of Probability Map for the decom-
position. Other than the mask attribute, it fails to outperform
the RPCA via PM-PCP method.

However, the RPCA via PM-PCP method is not the
best for attributes in the torso region, as the decomposition
by RPCA via PCP and Conventional PCA performs better.
Except for the backpack attribute where the RPCA via PCP
holds a clear advantage, the differences between the three
methods are relatively small.

The most likely reason is due to the variations of hu-
man body (mainly the height) in the dataset which in turn
makes the rectangular region for the attribute labeling not
as accurate. The by-product of this is that the probabil-
ity of some parts in the backpack PM are relatively low, and
the weighted decomposition makes the sparse representation
of the attribute information of those parts not as apparent.
This can be observed in the bottom row of Fig. 6, where the
qualitative comparison is shown. Note that the resulting im-
ages have been normalized for visualization purpose. The
normalization is performed per image, where minimum and
maximum pixel values are changed to 0 and 1, respectively.

In Fig. 6, it can also be seen that the sparse representa-
tion of the thermal infrared image clearly shows the extracted
attributes decomposed by each method. The Conventional
Average produces a lot more noise in the results than other
decomposition methods, where the body shape can still be
clearly seen. The Conventional PCA shows better decompo-
sition results than the Conventional Average, although not by
much. The results of the decomposition via PCP are better
than the previous methods, although some clothes and hair
details are still noticeable.

The results of the Post-PCP PM method show a more
focused decomposition. However, there is still noise un-
related to the attribute we try to recognize. The proposed
method; decomposition via PM-PCP, successfully extracts
the attribute information almost exclusively. The usage of
Probability Map proves to be helpful for the decomposition,
as shown in both quantitative and qualitative results. Al-
though the results of the decomposition by RPCA via PM-
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Fig. 6 Examples of decomposition results by various methods. The decomposition is made for: (1)
“glasses”, (2) “mask”, (3) “shoulder bag”, and (4) “backpack” attributes. For visualization purpose, the
minimum and maximum pixel values for each image have been normalized to 0 and 1, respectively.

PCP has some erosion on the attributes, the Post-PCP PM
method contains more non-attribute noise, which is detri-
mental to the recognition performance.

For discussion, we provide results of decomposition by
methods that use PM in the case of negative sample used
as the input image. These are the cases where the decom-
posed image does not contain the attribute we are trying
to recognize. For example, let’s consider a case where the
input image contains only the “backpack” attribute when
we performed the decomposition for the “glasses” attribute.
Figure 7 shows some of the results of such decompositions.
Note that the decomposition results are normalized just like
before, i.e. minimum and maximum of each image are nor-
malized to 0 and 1, respectively. It can be seen that there

are details of clothing and face in the decomposition results
of both methods. However, the proposed method produces
better results with less noise than Post-PCP PM method.
Post-PCP PM focuses on the area corresponding to the PM,
but more clothes and face details are taken. As mentioned
previously, this leads to lower recognition results than the
proposed method.

5. Conclusion

This paper addressed the attribute recognition problem in
thermal infrared images, specifically on the wearable at-
tribute. Attribute recognition as a whole is a growing field
of research, but only a few studies have been conducted in
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Fig. 7 Examples of decomposition results by methods that use PM in
the case of negative input images. The decomposition is made for: (1)
“backpack”, (2) “shoulder bag”, (3) “glasses”, and (4) “mask” attributes.
For visualization purpose, the minimum and maximum pixel values for each
image have been normalized to 0 and 1, respectively. Since the images do
not have the target attributes, pixels of the decomposed images are close to
black.

thermal infrared spectrum.
The purpose of this research was to identify a spe-

cific wearable attribute of a person in a thermal infrared im-
age. We adopted an attribute-wise decomposition approach
to this problem, extracting the attributes information with
prior knowledge and using it for recognition. The proposed
method employs a decomposition by Robust PCA via PM-
PCP, a modification of PCP used in our previous work [16].
We introduced Probability Map (PM) to achieve a more fo-
cused decomposition.

The results of experiments performed showed a sig-
nificant increase in performance with the decomposition
approach. Decomposition by Robust PCA via PM-PCP
achieved the highest performance in average with a 0.83
F-score, outperforming all other methods. By visual ob-

servation, the resulting images also showed relatively better
extracted attributes.

Increasing the size of the dataset is important for fur-
ther research, which could provide both more intra- and
inter-class variations. Immediate attention can also be given
to the alignment of the body in the dataset. In the case of the
creation of the Probability Map, instead of making a rect-
angular region, a more detailed — pixel-wise — labeling of
an attribute can potentially be helpful. Lastly, it is desir-
able to perform recognition on images taken in a real-world
situation.
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Appendix: RPCA via PM-PCP Algorithm

The algorithm used to solve the minimization problem of
RPCA via PM-PCP is based on the original PCP with a slight
change, which is an inclusion of an element-wise matrix
multiplication. Since the Probability Map is constant, the
usage of PM does not affect convergence. The original PCP
algorithm is solved by alternating directions method [31],
a special case of Augmented Lagrange Multiplier (ALM)
algorithms. More details of the original PCP algorithm can
be seen in [18].

Algorithm 1 RPCA via PM-PCP Algorithm
1: initialize: S0 = Y0 = 0, µ > 0
2: while not converged do
3: Lk+1 = Dµ−1 (M − Sk + µ−1Yk )

4: Sk+1 = Pc ◦ Sλµ−1 (M − Lk+1 + µ
−1Yk )

5: Yk+1 = Yk + µ(M − Lk+1 − Sk+1)
6: end while
7: output: L, S

Algorithm 1 shows the PM-PCP algorithm, where µ =
n1n2/4| |M | |1 (note that n1, n2 are the size of M) and Y is
the Lagrange multiplier matrix. D(X ) = US(Σ)V ∗ denotes
the singular value thresholding operator, where X = UΣV ∗

is singular value decomposition. A ◦ B is an element-wise
matrix multiplication. The convergence is reached when
| |M−L−S | |F ≤ δ | |M | |F , where δ = 10−7 in the experiment.
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